采用Sigmoid函数的Web服务协同过滤推荐算法
本文关键词: 协同过滤 Sigmoid函数 数据稀疏性 推荐系统 用户兴趣 出处:《计算机科学与探索》2017年02期 论文类型:期刊论文
【摘要】:协同过滤推荐技术被广泛用于各个推荐系统,但它仍然存在着用户评分数据稀疏性问题,可能导致推荐结果不准确。针对该问题,提出了一种采用Sigmoid函数的协同过滤推荐算法。首先,分析用户兴趣与其调用服务的次数之间的关系,利用TF-IDF算法计算用户对服务内容的兴趣度;其次,定义一个Sigmoid函数,根据服务调用次数计算用户对服务功能的兴趣度;最后,基于内容兴趣度和功能兴趣度计算用户兴趣相似度完成协同过滤算法,实现个性化的服务推荐。实验证明,该方法能有效缓解数据稀疏性问题,提高了推荐质量。
[Abstract]:Collaborative filtering recommendation technology is widely used in various recommendation systems, but it still has the problem of user rating data sparsity, which may lead to inaccurate recommendation results. A collaborative filtering recommendation algorithm using Sigmoid function is proposed. Firstly, the relationship between user interest and the number of service calls is analyzed. The TF-IDF algorithm is used to calculate the user's interest in the service content. Secondly, a Sigmoid function is defined to calculate the user's interest in the service function according to the number of service calls. Finally, the collaborative filtering algorithm based on the similarity of user interest and content interest and functional interest is implemented to realize personalized service recommendation. Experiments show that this method can effectively alleviate the problem of data sparsity. The quality of recommendation has been improved.
【作者单位】: 湖南科技大学知识处理与网络化制造湖南省普通高校重点实验室;
【基金】:国家自然科学基金Nos.61572186,61572187 湖南省教育厅科研基金No.15K043 南京大学计算机软件新技术国家重点实验室资助项目No.KFKT2015B04~~
【分类号】:TP391.3;TP393.09
【正文快照】: 1 引言 近年来随着服务计算及其相关技术的发展,互联网上涌现出大量功能相同但服务质量(quality of service,Qo S)各异的Web服务,人们在满足功能需求的同时对服务的非功能性需求愈发重视,使得个性化服务推荐技术成为服务计算领域的一个研究热点。 协同过滤推荐是目前个性化
【相似文献】
相关期刊论文 前10条
1 杨风召;;一种基于特征表的协同过滤算法[J];计算机工程与应用;2007年06期
2 王岚;翟正军;;基于时间加权的协同过滤算法[J];计算机应用;2007年09期
3 曾子明;张李义;;基于多属性决策和协同过滤的智能导购系统[J];武汉大学学报(工学版);2008年02期
4 张富国;;用户多兴趣下基于信任的协同过滤算法研究[J];小型微型计算机系统;2008年08期
5 侯翠琴;焦李成;张文革;;一种压缩稀疏用户评分矩阵的协同过滤算法[J];西安电子科技大学学报;2009年04期
6 廖新考;;基于用户特征和项目属性的混合协同过滤推荐[J];福建电脑;2010年07期
7 沈磊;周一民;李舟军;;基于心理学模型的协同过滤推荐方法[J];计算机工程;2010年20期
8 徐红;彭黎;郭艾寅;徐云剑;;基于用户多兴趣的协同过滤策略改进研究[J];计算机技术与发展;2011年04期
9 焦晨斌;王世卿;;基于模型填充的混合协同过滤算法[J];微计算机信息;2011年11期
10 郑婕;鲍海琴;;基于协同过滤推荐技术的个性化网络教学平台研究[J];科技风;2012年06期
相关会议论文 前10条
1 沈杰峰;杜亚军;唐俊;;一种基于项目分类的协同过滤算法[A];第二十二届中国数据库学术会议论文集(技术报告篇)[C];2005年
2 周军锋;汤显;郭景峰;;一种优化的协同过滤推荐算法[A];第二十一届中国数据库学术会议论文集(研究报告篇)[C];2004年
3 董全德;;基于双信息源的协同过滤算法研究[A];全国第20届计算机技术与应用学术会议(CACIS·2009)暨全国第1届安全关键技术与应用学术会议论文集(上册)[C];2009年
4 张光卫;康建初;李鹤松;刘常昱;李德毅;;面向场景的协同过滤推荐算法[A];中国系统仿真学会第五次全国会员代表大会暨2006年全国学术年会论文集[C];2006年
5 李建国;姚良超;汤庸;郭欢;;基于认知度的协同过滤推荐算法[A];第26届中国数据库学术会议论文集(B辑)[C];2009年
6 王明文;陶红亮;熊小勇;;双向聚类迭代的协同过滤推荐算法[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年
7 胡必云;李舟军;王君;;基于心理测量学的协同过滤相似度方法(英文)[A];NDBC2010第27届中国数据库学术会议论文集(B辑)[C];2010年
8 林丽冰;师瑞峰;周一民;李月雷;;基于双聚类的协同过滤推荐算法[A];2008'中国信息技术与应用学术论坛论文集(一)[C];2008年
9 罗喜军;王韬丞;杜小勇;刘红岩;何军;;基于类别的推荐——一种解决协同推荐中冷启动问题的方法[A];第二十四届中国数据库学术会议论文集(研究报告篇)[C];2007年
10 黄创光;印鉴;汪静;刘玉葆;王甲海;;不确定近邻的协同过滤推荐算法[A];NDBC2010第27届中国数据库学术会议论文集A辑一[C];2010年
相关博士学位论文 前10条
1 纪科;融合上下文信息的混合协同过滤推荐算法研究[D];北京交通大学;2016年
2 程殿虎;基于协同过滤的社会网络推荐系统关键技术研究[D];中国海洋大学;2015年
3 于程远;基于QoS的Web服务推荐技术研究[D];上海交通大学;2015年
4 李聪;电子商务推荐系统中协同过滤瓶颈问题研究[D];合肥工业大学;2009年
5 郭艳红;推荐系统的协同过滤算法与应用研究[D];大连理工大学;2008年
6 罗恒;基于协同过滤视角的受限玻尔兹曼机研究[D];上海交通大学;2011年
7 薛福亮;电子商务协同过滤推荐质量影响因素及其改进机制研究[D];天津大学;2012年
8 高e,
本文编号:1448156
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1448156.html