高清视频去隔行与降噪算法研究与实现
发布时间:2018-01-24 01:28
本文关键词: 去隔行 运动检测 降噪 并行计算 块匹配 出处:《北京交通大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着多媒体技术的发展,数字电视系统和显示设备对视频信号的质量要求越来越高,视频后处理技术变得越来越重要。视频信号的去隔行技术和视频的降噪技术是视频后处理技术不可或缺的两种技术。去隔行技术是为了解决由于隔行扫描而产生的锯齿效应的问题,降噪算法在提高视频信号质量的同时,也成为其它视频增强算法的预处理流程。因此,去隔行和降噪两种算法的研究都有较强的实际意义。高计算复杂度的算法在现实中会遇到时间复杂度过高的瓶颈而无法得到推广,因此研究视频处理算法的并行设计拥有了较高的实际意义。本文针对去隔行技术提出了一种基于运动检测的边缘自适应去隔行算法,针对三维块匹配降噪算法的时间复杂度过高的情况,设计了针对三维块匹配降噪算法的并行程序。本文的主要工作如下:(1)针对隔行扫描的视频信号会产生锯齿效应,本文在前人的基础上提出了一种改进的基于运动检测的边缘自适应去隔行算法。该算法在运动检测阶段引入了前后五场信息作为运动检测的信息源,更多的利用了相关场的运动信息,使运动检测更加精确。在运动判定的阈值上,本文引入了一种动态阈值的方法,阈值的大小根据相对应像素的灰度值动态变化,有效的降低了检测误差。(2)在得到去隔行运动检测结果后,对场信息进行插值得到视频帧信息。本文在插值过程中引入了纹理检测器,将运动信息划分为纹理区域以及平滑区域,在两个区域内采用不同的插值方法,有效的保护了图像边缘信息和高频分量。实验表明,本文在运动检测和插值过程中提出的改进提高了去隔行的效果。(3)三维块匹配降噪算法是降噪算法中最有效的算法之一,该算法无论在主观上还是客观上都有着很好的降噪效果,但是因为算法的计算复杂度较高,处理一帧低分辨率的视频信息就需要数秒钟的时间,制约了该算法在实际中的应用。基于此,本文针对三维块匹配算法进行了并行算法设计,重点研究和设计了块匹配和硬阈值滤波模块,实验表明,本文设计的并行算法达到了较高的加速比。
[Abstract]:With the development of multimedia technology, digital TV system and display equipment of video signal quality requirements more and more high, video postprocessing technology becomes more and more important. The noise reduction technology of video signal and video deinterlacing technology are two kinds of techniques of video postprocessing technology indispensable. Deinterlacing technology is to solve the aliasing effect due to the interlaced problem, noise reduction algorithm can improve the video quality at the same time, also become the other video enhancement preprocessing procedure of the algorithm. Therefore, deinterlacing and noise reduction of the two algorithms research has a strong practical significance. The high computational complexity of the algorithm in real time complexity will encounter bottlenecks too high and can not be extended, so the research on video processing parallel design has high practical significance. This paper algorithm de interlacing technique is proposed based on motion detection The edge adaptive deinterlacing algorithm for complex 3D block matching algorithm for noise reduction in time, is designed for 3D block matching noise reduction algorithm for parallel program. The main work of this paper are as follows: (1) the interlaced video signal will produce sawtooth effect, on the basis of predecessors' proposed an improved edge detection based on motion adaptive deinterlacing algorithm. The algorithm introduces five field motion detection before and after the information as a source of information in the motion detection stage, more use of motion information of related field, make motion detection more accurate. In the movement to determine the threshold, this paper introduces a method of dynamic the threshold and threshold according to the size of the corresponding pixel value changes, effectively reduce the detection error. (2) in de interlacing motion detection results, the field information is inserted to video Frame information. This paper introduces a texture detector in the process of interpolation, motion information is divided into texture region and smooth region, different interpolation methods used in the two region, effectively protect the image edge information and the high frequency component. Experimental results show that the proposed improvements in motion detection and interpolation process to improve vibration the results. (3) three dimensional block matching algorithm is one of the most effective noise reduction algorithm of noise reduction algorithm, the algorithm in both subjective and objective has a good noise reduction effect, but because of the computational complexity of the algorithm is high, processing a frame low resolution video information requires the number of seconds, restrict the application of the algorithm in practice. Based on this, this paper 3D block matching algorithm of parallel algorithm design, the research and design of block matching and hard threshold filtering module, the test results show that the The parallel algorithm designed in this paper achieves a higher acceleration ratio.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前2条
1 郭静;陈庆奎;;基于CUDA的快速图像压缩[J];计算机工程与设计;2010年14期
2 李军;李艳辉;陈双平;;CUDA架构下的快速图像去噪[J];计算机工程与应用;2009年11期
相关硕士学位论文 前1条
1 年华;GPU通用计算与基于SIFT特征的图像匹配并行算法研究[D];西安电子科技大学;2010年
,本文编号:1458784
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1458784.html