实用函数加密算法研究与应用
发布时间:2018-02-11 09:19
本文关键词: 函数加密 内积函数加密 ORE体制 加密数据范围查询 出处:《浙江理工大学》2017年硕士论文 论文类型:学位论文
【摘要】:函数加密是对传统加密的扩展,它允许第三方在不解密密文的情况下计算输出明文的函数值,非常适合于加密数据外包计算场景。函数加密是现代密码学的重要分支,具有重要的理论价值及广泛的应用前景。然而,目前所有的支持任意函数的通用函数加密体制都要使用低效的不可区分混淆器,因而还不是很实用。本文我们将重点研究支持特定函数的实用函数加密体制,如内积函数加密、order-revealing encryption(ORE)。这些特定函数的加密体制是通用函数加密体制的特例,它们的构造并不依靠不可区分混淆器,因而是非常高效的。我们的主要研究成果如下:1.Kim等阐述了函数隐藏的内积函数加密方案的三个应用场景:加密生物特征认证、加密最近邻向量查找、加密线性回归。他们并没有对这三个应用实现程序。我们的主要贡献如下:对三个应用实现过程进行了具体描述,给出了程序实现及测试与比较。2.Lewi等提出了基于ORE方案的加密数据范围查询体制。他们的方案使用了顺序表组织数据,采用的是二叉查找算法。该算法的查找时间复杂度是对数级别,但是在插入、删除的时候需要移动大量的数据,造成了很多不必要的开销。本文,我们采用基于B+树数据结构来组织加密数据,我们的改进方案在查找、插入和删除等方面的时间复杂度都是对数级别。
[Abstract]:Function encryption is an extension of traditional encryption, which allows third parties to calculate the output value of plaintext without decrypting ciphertext, which is very suitable for outsourced computing scenarios of encrypted data. Function encryption is an important branch of modern cryptography. It has important theoretical value and wide application prospect. However, at present, all general function encryption schemes that support arbitrary functions must use indistinguishable obfuscators with low efficiency. Therefore, it is not very practical. In this paper, we will focus on the study of functional encryption schemes that support specific functions, such as inner product functions, such as order-realing encryption schemes, which are special examples of general function encryption schemes. They are very efficient because they do not rely on indiscernible obfuscators. Our main research results are as follows: 1. Kim and others describe the three application scenarios of the function hidden inner product function encryption scheme: encryption biometric authentication. Encryption nearest neighbor vector search, encryption linear regression. They did not implement the three applications. Our main contribution is as follows: the implementation of the three applications are described in detail. The program implementation and test and comparison. 2. Lewi and others put forward a scheme based on ORE scheme to query the range of encrypted data. Their scheme uses the order table to organize the data. Binary search algorithm is used in this algorithm. The complexity of the algorithm is logarithmic, but when inserting and deleting, a lot of data need to be moved, resulting in a lot of unnecessary overhead. We use the B-tree data structure to organize the encrypted data. The time complexity of our improved scheme is logarithmic in the aspects of lookup, insertion and deletion.
【学位授予单位】:浙江理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP309.7
【参考文献】
相关硕士学位论文 前1条
1 肖招娣;高维数据集上的降维算法及其应用[D];华南理工大学;2013年
,本文编号:1502713
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1502713.html