基于内容的图像分割方法综述
本文关键词: 图像分割 图论 聚类 语义分割 深度神经网络 出处:《软件学报》2017年01期 论文类型:期刊论文
【摘要】:图像分割是指将图像分成若干具有相似性质的区域的过程,是许多图像处理任务的预处理步骤.近年来,国内外学者主要研究基于图像内容的分割算法.在广泛调研大量文献和最新成果的基础上,将图像分割算法分为基于图论的方法、基于像素聚类的方法和语义分割方法这3种类型并分别加以介绍.对每类方法所包含的典型算法,尤其是最近几年利用深度网络技术的语义图像分割方法的基本思想、优缺点进行了分析、对比和总结.介绍了图像分割常用的基准数据集和算法评价标准,并用实验对各种图像分割算法进行对比.最后进行总结,并对未来可能的发展趋势加以展望.
[Abstract]:Image segmentation refers to the process of dividing an image into several areas with similar properties. It is a preprocessing step for many image processing tasks. Domestic and foreign scholars mainly study image content-based segmentation algorithms. On the basis of extensive investigation of a large number of literature and the latest achievements, the image segmentation algorithm is divided into graph-based methods. Three kinds of methods based on pixel clustering and semantic segmentation are introduced respectively. The basic idea of semantic image segmentation based on depth network technology in recent years is discussed. The advantages and disadvantages of image segmentation are analyzed, compared and summarized. The common benchmark data sets and algorithm evaluation criteria are introduced, and various image segmentation algorithms are compared by experiments. And the possible development trend in the future is prospected.
【作者单位】: 计算机软件新技术国家重点实验室(南京大学);南京大学计算机科学与技术系;南京理工大学泰州科技学院移动互联网学院;南京工程学院通信工程系;
【基金】:国家自然科学基金(61373012,91218302,61321491,61373059) 江苏省高校自然科学研究项目(15KJB520016) 江苏省自然科学基金(BK20150016)~~
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 唐伟力;龙建忠;;一种基于降雨模型的图像分割方法在砾岩图像分割中的应用[J];成都信息工程学院学报;2007年02期
2 黄晓莉;曾黄麟;王秀碧;刘永春;;基于脉冲耦合神经网络的图像分割[J];信息技术;2008年09期
3 肖飞;綦星光;;图像分割方法综述[J];可编程控制器与工厂自动化;2009年11期
4 汪一休;;一种交互式图像分割的修正优化方法[J];中国科学技术大学学报;2010年02期
5 李丹;;图像分割方法及其应用研究[J];科技信息;2010年36期
6 龚永义;黄辉;于继明;关履泰;;基于熵的两区域图像分割[J];中国图象图形学报;2011年05期
7 张甫;李兴来;陈佳君;;浅谈图像分割方法的研究运用[J];科技创新与应用;2012年04期
8 汪梅;何高明;贺杰;;常见图像分割的技术分析与比较[J];计算机光盘软件与应用;2013年06期
9 魏庆;卢照敢;邵超;;基于复杂性指数的图像分割必要性判别技术[J];计算机工程与应用;2013年16期
10 陈晓丹;李思明;;图像分割研究进展[J];现代计算机(专业版);2013年33期
相关会议论文 前10条
1 杨魁;赵志刚;;图像分割技术综述[A];2008年中国高校通信类院系学术研讨会论文集(下册)[C];2009年
2 杨暄;郭成安;李建华;;改进的脉冲耦合神经网络及其在图像分割中的应用[A];第十届全国信号处理学术年会(CCSP-2001)论文集[C];2001年
3 杨生友;;图像分割在医学图像中应用现状综述[A];2009中华医学会影像技术分会第十七次全国学术大会论文集[C];2009年
4 闫平昆;;基于模型的图像分割技术及其医学应用[A];第十五届全国图象图形学学术会议论文集[C];2010年
5 高岚;胡友为;潘峰;卢凌;;基于小生境遗传算法的SAR图像分割[A];可持续发展的中国交通——2005全国博士生学术论坛(交通运输工程学科)论文集(下册)[C];2005年
6 孙莉;张艳宁;胡伏原;赵荣椿;;基于Gaussian-Hermite矩的SAR图像分割[A];第十三届全国图象图形学学术会议论文集[C];2006年
7 李盛;;基于协同聚类的图像分割[A];第十四届全国图象图形学学术会议论文集[C];2008年
8 张利;许家佗;;舌象图像分割技术的研究与应用进展[A];中华中医药学会中医诊断学分会第十次学术研讨会论文集[C];2009年
9 秦昆;李振宇;李辉;李德毅;;基于云模型和格网划分的图像分割方法[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年
10 高惠琳;窦丽华;陈文颉;谢刚;;图像分割技术在医学CT中的应用[A];中国自动化学会控制理论专业委员会A卷[C];2011年
相关博士学位论文 前10条
1 白雪飞;基于视觉显著性的图像分割方法研究[D];山西大学;2014年
2 黄万里;基于高分卫星数据多尺度图像分割方法的天山森林小班边界提取研究[D];福建师范大学;2015年
3 王辉;图像分割的最优化和水平集方法研究[D];电子科技大学;2014年
4 高婧婧;脑部MR图像分割理论研究[D];电子科技大学;2014年
5 潘改;偏微分方程在图像分割中的应用研究[D];东北大学;2013年
6 冯籍澜;高分辨率SAR图像分割与分类方法研究[D];电子科技大学;2015年
7 李伟斌;图像分割中的变分模型与快速算法研究[D];国防科学技术大学;2014年
8 邓晓政;基于免疫克隆选择优化和谱聚类的复杂图像分割[D];西安电子科技大学;2014年
9 帅永e,
本文编号:1530500
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1530500.html