当前位置:主页 > 科技论文 > 软件论文 >

基于深度堆叠卷积神经网络的图像融合

发布时间:2018-02-25 03:13

  本文关键词: 图像融合 深度学习 卷积神经网络 堆叠自动编码 滤波器 出处:《计算机学报》2017年11期  论文类型:期刊论文


【摘要】:该文针对多尺度变换融合图像中普遍存在的需要依据先验知识选取滤波器,导致融合效果存在不确定性的问题,提出了基于深度堆叠卷积神经网络的融合方法.首先,分别以高斯拉普拉斯滤波器和高斯滤波器为首层网络的初始卷积核,将源图像分解为高频和低频图像序列;其次,基于He K方法初始化其余层卷积核,获得与源图像尺寸相同的高频和低频重构图像各一幅,并将二者合成源图像的近似图像;再以源图像和近似图像像素值之差的平方和的均值为误差函数,进行反向传播训练形成基本神经单元;之后,将多个基本单元堆叠起来利用end-to-end的方式调整整个网络得到深度堆叠神经网络.然后,利用该堆叠网络分别分解测试图像对,得到各自的高频和低频图像,再基于局部方差取大和区域匹配度合并的规则分别融合高频和低频图像,并将高频融合图像和低频融合图像放回最后一层网络,得到最终的融合图像.实验结果表明:与基于双树复小波变换(Dual-Tree Complex Wavelet Transform,DTCWT)、非下采样轮廓波变换(Non-Subsampled Contourlet Transform,NSCT)和非下采样剪切波变换(Non-Subsampled Shearlet Transform,NSST)的融合结果相比,用高斯拉普拉斯滤波器和高斯滤波器初始化的深度堆叠卷积神经网络融合效果主观效果好,客观指标最优个数为NSCT的3.3倍,运行时间为NSCT的30.3%和NSST的11.6%.
[Abstract]:In this paper, a fusion method based on deep stacked convolution neural network is proposed to solve the problem that filter selection based on prior knowledge is necessary in multiscale image fusion, which leads to uncertainty of fusion effect. Taking Gao Si Laplacian filter and Gao Si filter as initial convolution cores of the first layer network, the source image is decomposed into high frequency and low frequency image sequences respectively. Secondly, the other layer convolution cores are initialized based on He-K method. A high frequency and a low frequency reconstructed image with the same size as the source image are obtained, and the approximate image of the source image is synthesized. Then, the mean value of the square sum of the difference between the pixel value of the source image and the approximate image is taken as the error function. The basic neural unit is formed by backpropagation training. After stacking several basic units and adjusting the whole network by end-to-end, the deep stacking neural network is obtained. Then, the test image pair is decomposed using the stack network. The high frequency and low frequency images are obtained, and then the high frequency and low frequency images are fused based on the rules of local variance and region matching, respectively, and the high frequency fusion images and the low frequency fusion images are put back to the last layer of the network. The experimental results show that the fusion results are compared with those based on Dual-Tree Complex Wavelet transform (DTCWTT), Non-Subsampled Contourlet transform (NSCT) and Non-Subsampled Shearlet transform (NSSTT). The fusion effect of deep stack convolution neural network initialized by Gao Si Laplace filter and Gao Si filter is good, the optimal number of objective indexes is 3.3 times of NSCT, the running time is 30.3% of NSCT and 11.662 of NSST.
【作者单位】: 中北大学计算机与控制工程学院;
【基金】:山西省重点研发计划项目(201603D321128) 山西省应用基础研究项目(201701D121062) 中北大学第十三届研究生科技立项(20161354)资助~~
【分类号】:TP183;TP391.41

【相似文献】

相关期刊论文 前10条

1 旷章辉;王甲海;周雅兰;;用改进的竞争Hopfield神经网络求解多边形近似问题[J];计算机科学;2009年03期

2 高永建 ,吴健康;神经网络及其识别应用简介[J];电信科学;1990年02期

3 谢国梁;;神经网络:从希望到现实[J];激光与光电子学进展;1991年01期

4 郑士贵;文献自动阅读神经网络[J];管理科学文摘;1996年08期

5 吕芬;赵生妹;;基于Hopfield神经网络的噪声字母识别[J];计算机与信息技术;2005年12期

6 李毅;童红俊;宋贵宝;李冬;;神经网络在飞行器航迹仿真计算中的应用[J];海军航空工程学院学报;2006年05期

7 林钢;;基于SOM神经网络对潜在客户的挖掘[J];南宁职业技术学院学报;2006年04期

8 杨帆;陈劲杰;唐梅华;陈鑫;;简论神经网络在搜索中的应用[J];机械管理开发;2008年01期

9 朱红斌;;LVQ神经网络在交通事件检测中的应用[J];计算机工程与应用;2008年34期

10 李彤岩;李兴明;;神经网络在确定关联规则挖掘算法权值中的应用研究[J];计算机应用研究;2008年05期

相关会议论文 前10条

1 陈文新;王长富;戴蓓倩;;基于神经网络的汉语四声识别[A];第一届全国语言识别学术报告与展示会论文集[C];1990年

2 李睿;李明军;;一种模糊高斯基神经网络在数值逼近上的仿真[A];计算机技术与应用进展——全国第17届计算机科学与技术应用(CACIS)学术会议论文集(上册)[C];2006年

3 许旭萍;臧道青;;采用Hopfield神经网络实施缸盖表面点阵字符识别[A];第十五届全国汽车检测技术年会论文集[C];2011年

4 朱长春;;神经网络用于线性时固有系统的广义状态转移矩阵的识别[A];中国工程物理研究院科技年报(1999)[C];1999年

5 王玉斌;李永明;王颖;;用数据挖掘和神经网络技术预测工程造价[A];第十一届全国电工数学学术年会论文集[C];2007年

6 应捷;袁一方;;神经网络指纹特征点匹配算法的改进[A];2007'中国仪器仪表与测控技术交流大会论文集(二)[C];2007年

7 谢小良;符卓;;基于Hopfield神经网络的单周期船舶调度模型及算法[A];2008年全国开放式分布与并行计算机学术会议论文集(下册)[C];2008年

8 陈意;;神经网络在船舶识别一个应用[A];船舶航泊安全的新经验新技术论文集(上册)[C];2007年

9 王辉;杨杰;黎明;蔡念;;一种基于神经网络的图像复原方法[A];2006年全国光电技术学术交流会会议文集(D 光电信息处理技术专题)[C];2006年

10 贾睿;徐启强;刘艳;;基于神经网络的网壳结构近似分析研究[A];第二十一届全国振动与噪声高技术及应用学术会议论文集[C];2008年

相关重要报纸文章 前1条

1 中国科技大学计算机系 邢方亮;神经网络挑战人类大脑[N];计算机世界;2003年

相关博士学位论文 前10条

1 李晓刚;基于神经网络的码垛机器人视觉位姿测量及伺服控制研究[D];北京林业大学;2015年

2 户保田;基于深度神经网络的文本表示及其应用[D];哈尔滨工业大学;2016年

3 沈旭;基于序列深度学习的视频分析:建模表达与应用[D];中国科学技术大学;2017年

4 诸勇;正交回归神经网络及其在控制系统中的应用[D];浙江大学;1998年

5 田景文;地下油藏的仿真与预测[D];哈尔滨工程大学;2001年

6 彭宏京;基于稀疏RAM的神经网络及其人脸识别应用研究[D];南京航空航天大学;2002年

7 王春萌;多曝光图像融合关键技术的研究[D];山东大学;2015年

8 费春;基于智能优化和视觉显著性的图像融合研究[D];电子科技大学;2015年

9 段昶;基于Shearlet的图像融合研究[D];电子科技大学;2014年

10 史立芳;大视场人工复眼成像结构研究与实验[D];电子科技大学;2014年

相关硕士学位论文 前10条

1 陈彦至;神经网络降维算法研究与应用[D];华南理工大学;2015年

2 蔡邦宇;人脸识别中单次ERP时空特征分析及其快速检索的应用[D];浙江大学;2015年

3 郑川;垃圾评论检测算法的研究[D];西南交通大学;2015年

4 汪济民;基于卷积神经网络的人脸检测和性别识别研究[D];南京理工大学;2015年

5 彭玲玲;基于不确定理论与机器学习的行人检测[D];长安大学;2015年

6 杨陈东;BP-Fisher判别分析法[D];长安大学;2015年

7 孟鑫;基于Hadoop云平台下的客流量预测研究[D];长安大学;2015年

8 张勇;深度卷积神经网络在车牌和人脸检测领域的应用研究[D];郑州大学;2015年

9 宋璐璐;财经职业技术学院票务管理系统的设计与实现[D];西安工业大学;2015年

10 陈锐浩;基于神经网络的口令属性分析工具开发[D];上海交通大学;2015年



本文编号:1532784

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1532784.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户cd660***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com