当前位置:主页 > 科技论文 > 软件论文 >

基于人脸识别的智能推送服务取号系统研究

发布时间:2018-03-18 01:37

  本文选题:人脸识别 切入点:服务推送 出处:《海南大学》2017年硕士论文 论文类型:学位论文


【摘要】:传统的Web推送服务大多是根据系统的登录账号、历史记录或者订阅记录的分析判断进行内容的推送,这样的推送机制不能充分体现使用者个体间的喜好差异。自从Web2.0技术推出以来,基于该技术的智能化、个性化的推送服务和应用成为该领域的研究热点。本文根据服务大厅的个性化服务的实际需求,探讨将人脸识别技术与服务推送技术相结合,实现基于人脸识别的个性化、智能服务推送系统。在实际的推送服务系统中,一个用户在样本库中通常只有一幅头像,所以本文将重点探讨单样本的人脸特征提取算法和识别技术。在分析基于主成份分析法的单样本人脸识别经典算法((PC)2 A、SPCA)优缺点的基础上,提出了通过SPCA算法提取全局特征,通过M(2D)2PCA+PCA算法提取局部特征,然后通过最大隶属度分别求得基于全局特征和基于局部特征的识别结果,最后采用模糊综合方法在决策层进行加权融合,并在ORL人脸库和Yale人脸库上进行了算法验证。实验结果表明,该算法具有良好的识别性能,在ORL人脸库的识别率为89.94%,在Yale人脸库的识别率为90.94%;并且对表情、姿态、光照等的变化具有较好的鲁棒性。为了提供更精准的个性化服务推送,对基于用户个人数据分析的个性化服务技术进行了深入的探讨,建立了基于用户协同过滤算法(UBCF)模型,最后通过PUSHLET技术将服务信息推送给用户。最后,以服务大厅取号机系统为例,研发了基于人脸识别的智能推送服务取号原型系统,该系统由人脸识别、账号管理、信息获取以及服务推送等四部分构成,实现了服务推送系统的个性化、智能化的目的。
[Abstract]:The traditional Web push service is mostly based on the system's login account, history or subscription records of the analysis of the content of the push, This push mechanism does not fully reflect the differences of preferences among users. Since the introduction of Web2.0 technology, based on the intelligence of that technology, Personalized push service and application have become the research hotspot in this field. According to the actual demand of personalized service in service hall, this paper discusses the combination of face recognition technology and service push technology to realize personalization based on face recognition. An intelligent service push system. In a real push service system, a user usually has only one image in the sample library. So this paper will focus on the single sample face feature extraction algorithm and recognition technology. On the basis of analyzing the advantages and disadvantages of single sample face recognition classic algorithm based on principal component analysis, this paper proposes to extract global features by SPCA algorithm. The local feature is extracted by MJ 2DX 2PCA PCA algorithm, then the recognition results based on global feature and local feature are obtained by the maximum membership degree. Finally, the fuzzy synthesis method is used for weighted fusion at the decision level. The algorithm is validated on ORL face database and Yale face database. The experimental results show that the algorithm has good recognition performance, the recognition rate in ORL face database is 89.94, the recognition rate in Yale face database is 90.94, and the recognition rate is 90.94 for expression and pose. In order to provide more accurate personalized service push, the personalized service technology based on user personal data analysis is deeply discussed, and the UBCF-based user collaborative filtering algorithm is established. Finally, the service information is pushed to the user by PUSHLET technology. Finally, a prototype system of intelligent push service number retrieval based on face recognition is developed, which is managed by face recognition and account number. Information acquisition and service push are composed of four parts, which realize the purpose of individuation and intelligence of service push system.
【学位授予单位】:海南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;TP391.3

【相似文献】

相关期刊论文 前10条

1 白雪松;徐汝兴;郑巧英;;数字图书馆的个性化推送服务[J];图书馆杂志;2005年09期

2 高孝梅;;基于聚类分析的图书馆个性化推送服务的实现[J];中小学图书情报世界;2009年02期

3 许雯倩;李娟;;论信息化背景下高校档案推送服务[J];兰台世界;2013年08期

4 ;生命科学图书馆竭诚提供“文献推送服务”[J];生命科学;2003年05期

5 黄红梅;朱慧;;推送服务理念下图书馆网络服务平台优化研究[J];高校图书馆工作;2010年06期

6 左雪梅,马功兰;论网络环境下图书馆的个性化服务[J];大学图书情报学刊;2005年01期

7 栾冠楠;孙金立;梁蜀忠;陈冬梅;;通过手机推送给医务工作者的信息服务[J];现代生物医学进展;2010年15期

8 闻年喜,游大鸣,王素清,孙永盛;利用数字化 开展个性化 缩微影像资源 推送服务[J];数字与缩微影像;2005年01期

9 黄微;高俊峰;王晨;齐s,

本文编号:1627449


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1627449.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户062fa***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com