基于扩展质量功能展开和网络图的产品大数据分析方法及其应用探讨
发布时间:2018-03-22 14:37
本文选题:大数据分析 切入点:质量功能展开 出处:《中国科技论坛》2017年12期 论文类型:期刊论文
【摘要】:现有大数据分析方法存在侧重算法提升而忽视数据固有关系、难以综合分析网络形态数据之间连动关系的问题。为解决这些问题,提出了一个基于扩展QFD和网络图的产品大数据分析方法。该方法由面向数据关系的扩展QFD、基于网络图的产品大数据关系描述模型和基于该描述模型的产品大数据分析模型组成。该方法有助于厘清产品各类数据间的固有关系,可将具有复杂结构、多重关系的数据以清晰的网络结构表现出来,并可综合利用多种大数据分析模型对产品大数据进行模式探索,从而达到从海量数据中获取关键数据、发现新数据及数据间的新关系等目标。解决了现有大数据分析方法忽视数据固有关系、难以综合分析数据间连动关系的问题,使数据建模与算法技术更好地结合。
[Abstract]:The existing big data analysis methods focus on algorithm upgrading and ignore the inherent relationship of data, so it is difficult to comprehensively analyze the linkage relationship between network morphological data. In order to solve these problems, In this paper, a product big data analysis method based on extended QFD and network diagram is proposed. Analysis of model composition. This method helps to clarify the inherent relationships between the various types of product data, The data with complex structure and multiple relationships can be represented by a clear network structure, and various big data analysis models can be comprehensively used to explore the pattern of the product big data, so as to obtain the key data from the massive data. It solves the problem that the existing big data analysis methods ignore the inherent relationship of data, and it is difficult to analyze the relationship between the data, so that the data modeling and algorithm technology can be combined better.
【作者单位】: 北京工业大学经济与管理学院北京现代制造业发展研究基地;
【基金】:国家自然科学基金面上项目“基于类比推理的短生命周期无形体验品需求预测”(71672004)
【分类号】:TP311.13
,
本文编号:1649092
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1649092.html