基于改进ViBe的运动目标检测算法
本文选题:ViBe算法 切入点:动态背景 出处:《电子技术应用》2017年04期
【摘要】:在运动目标检测领域,ViBe算法由于其实时性高、鲁棒性好等特点,已经被广泛地研究与使用。但动态背景往往会干扰检测结果。通过度量背景复杂度更新距离阈值和背景模型更新率的方式,提出了一种基于改进ViBe算法的运动目标检测算法,能有效地降低动态背景对检测结果造成的影响。最后,利用全局运动补偿算法将改进的ViBe算法应用到摄像机运动情况下,取得了一定效果。
[Abstract]:In the field of moving target detection, Vibe algorithm is characterized by its high real-time performance and good robustness. It has been widely studied and used, but the dynamic background often interferes with the detection results. By measuring the complexity of the background to update the distance threshold and the updating rate of the background model, a moving target detection algorithm based on the improved ViBe algorithm is proposed. It can effectively reduce the influence of dynamic background on the detection results. Finally, the improved ViBe algorithm is applied to the camera motion by using the global motion compensation algorithm, and a certain effect is obtained.
【作者单位】: 南京信息工程大学电子与信息工程学院;南京信息工程大学江苏省大气环境与装备技术协同创新中心;
【基金】:国家自然科学青年基金(61601230) 江苏省自然科学基金青年基金(BK20141004)
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 张桂林,熊艳,,曹伟,李强;一种评价自动目标检测算法性能的方法[J];华中理工大学学报(社会科学版);1994年05期
2 秦剑;陈钱;钱惟贤;;基于背景分类的弱小目标检测算法[J];光电工程;2011年01期
3 蒋建国;吴晖;齐美彬;张莉;;摄像机旋转运动下的快速目标检测算法[J];图学学报;2012年03期
4 逯鹏;张姗姗;刘驰;黄石磊;汤玉合;;基于稀疏超完备表示的目标检测算法[J];仪器仪表学报;2013年06期
5 李大辉;金涛;;弱小目标检测算法的设计与分析[J];中国科技信息;2013年16期
6 张明艳;许钢;孟樱;;基于时空特性的运动目标检测算法研究[J];安徽工程大学学报;2013年04期
7 徐振海,王雪松,肖顺平,庄钊文;基于模糊融合的目标检测算法研究[J];国防科技大学学报;2000年04期
8 李维雅,董能力,金钢,李正周;弱小目标检测算法性能评价的回归分析方法[J];光电工程;2005年02期
9 高陈强;田金文;王鹏;;基于时域特性分析的红外运动小目标检测算法[J];红外与激光工程;2008年05期
10 曾脉;左志宏;常晓夫;何煊;;一种准确而快速的运动目标检测算法[J];成都信息工程学院学报;2008年04期
相关会议论文 前10条
1 高飞;蒋建国;安红新;齐美彬;;一种快速运动目标检测算法[A];全国第22届计算机技术与应用学术会议(CACIS·2011)暨全国第3届安全关键技术与应用(SCA·2011)学术会议论文摘要集[C];2011年
2 孙瑾秋;张艳宁;姜磊;王敏;;基于变换域特征的星空背景弱小目标检测算法[A];第八届全国信号与信息处理联合学术会议论文集[C];2009年
3 邓宇;陈孝威;;综合利用时空信息的运动目标检测算法[A];第二届和谐人机环境联合学术会议(HHME2006)——第15届中国多媒体学术会议(NCMT'06)论文集[C];2006年
4 袁辉;孙卓;李德民;魏颖;;基于小波多尺度互能量交叉融合滤波的弱小目标检测算法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年
5 顾静良;万敏;张卫;郑捷;;低对比度弱小目标检测算法[A];中国工程物理研究院科技年报(2005)[C];2005年
6 黄龚;郑锦;刘养科;;摄像机水平巡扫时的运动目标检测算法[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年
7 张国华;;一种基于导引头稳定平台结构的目标检测算法[A];第九届全国光电技术学术交流会论文集(下册)[C];2010年
8 王正;刘瑞华;;基于PTZ摄像机的运动目标检测算法[A];全国第一届嵌入式技术联合学术会议论文集[C];2006年
9 王彪;王成儒;王芬芬;;一种改进的运动目标检测算法[A];计算机技术与应用进展·2007——全国第18届计算机技术与应用(CACIS)学术会议论文集[C];2007年
10 刘琳;顾国华;钱惟贤;陈钱;徐富元;;目标检测算法的研究以及SRIO协议在目标检测的应用[A];第八届华东三省一市真空学术交流会论文集[C];2013年
相关博士学位论文 前6条
1 王海丰;基于机器视觉的剖竹机加工目标检测算法研究[D];东北林业大学;2015年
2 高永婵;复杂场景下多通道阵列自适应目标检测算法研究[D];西安电子科技大学;2015年
3 王俊强;图像中人体目标检测算法研究[D];北京邮电大学;2012年
4 郭明玮;基于视觉记忆的目标检测算法:一个特征学习与特征联想的过程[D];中国科学技术大学;2014年
5 臧风妮;智能视频监控中海面舰船目标检测算法研究[D];中国海洋大学;2014年
6 陈伟;基于PSO的复杂工业环境视觉目标检测算法应用研究[D];武汉科技大学;2008年
相关硕士学位论文 前10条
1 刘恒建;基于FPGA+DSP的运动目标检测系统的设计与实现[D];南京理工大学;2015年
2 贾建英;视频序列中运动目标检测算法研究[D];长安大学;2015年
3 周亚运;基于TMS320DM642平台的红外运动目标检测算法设计[D];南京理工大学;2015年
4 姚丹;基于多光谱信息融合的弱小运动目标检测技术研究[D];哈尔滨工业大学;2015年
5 刘培培;基于区域特征的运动目标检测算法的研究与开发[D];广西大学;2015年
6 崔璇;天空背景下红外小目标检测算法研究[D];陕西师范大学;2015年
7 范肖肖;基于视觉注意机制的目标检测算法的研究[D];电子科技大学;2015年
8 丁婵;运动目标检测算法在嵌入式平台的研究[D];电子科技大学;2015年
9 张冠雄;基于标签传播的显著性目标检测算法研究[D];大连理工大学;2015年
10 李建波;视频监控中运动目标检测算法的研究[D];哈尔滨工业大学;2014年
本文编号:1659534
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1659534.html