融合深度相机点云与光学影像的室内三维建模
本文选题:Kinect传感器 切入点:Agisoft 出处:《测绘科学》2016年12期
【摘要】:针对传统的对点云进行拼接建模的方法无法得到较好的室内三维模型的问题,该文提出了一种融合Kinect点云与光学影像数据的室内三维建模方法:首先,利用Agisoft Photoscan软件对Kinect获得的彩色影像进行处理获得大量三维点,并与拼接后的Kinect点云进行融合,从而弥补Kinect点云缺失严重的现象;然后,针对不同的物体利用不同的方法对融合后的点云数据进行处理,并通过"孔洞算法"提取其边界点;最后,将边界点进行处理从而完成室内三维场景模型。实验结果表明,该文方法能够提供质量较高的三维点云数据,并且能得到较好的室内三维模型。
[Abstract]:In order to solve the problem that the traditional point cloud splicing modeling method can not get a better indoor 3D model, this paper proposes an indoor 3D modeling method combining Kinect point cloud and optical image data. By using Agisoft Photoscan software to process the color image obtained by Kinect, a large number of 3D points are obtained and fused with the Kinect point cloud after splicing, so as to make up for the serious lack of Kinect point cloud. Different methods are used to process the fused point cloud data for different objects, and the boundary points are extracted by "hole algorithm". Finally, the boundary points are processed to complete the indoor 3D scene model. This method can provide high quality 3D point cloud data and obtain better indoor 3D model.
【作者单位】: 中国地质大学(北京)土地科学技术学院;
【基金】:国家自然科学基金项目(41471360) 中央高校基本科研业务费专项资金项目(2652015176)
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 叶爱芬;龚声蓉;王朝晖;刘纯平;;基于随机分布估计的点云密度提取[J];计算机工程;2009年04期
2 梁新合;梁晋;郭成;曹巨明;;法向约束的多幅点云数据融合算法[J];西安交通大学学报;2009年05期
3 孟凡文;吴禄慎;;用继承与优化算法精密拼接无序点云[J];光学精密工程;2009年04期
4 李海亮;邓非;李刚;;摄影测量激光点云空洞修补[J];测绘科学;2010年05期
5 张晶;杨云生;丰少伟;;基于点云法矢变化的点云简化方法研究[J];计算机与数字工程;2011年12期
6 李晓久;景晓宁;;基于非接触式测量的人体点云简化方法[J];纺织学报;2012年07期
7 高恩阳;郑昊鸿;;点云数据滤波方法综述[J];科技资讯;2012年33期
8 范然;金小刚;;大规模点云选择及精简[J];图学学报;2013年03期
9 李伟;李旭东;赵慧洁;张颖;;基于姿态标准化的线特征点云提取方法[J];北京航空航天大学学报;2013年08期
10 钱伟春;3DSMAX中动态云的制作[J];多媒体世界;1999年03期
相关会议论文 前10条
1 李文涛;韦群;杨海龙;;基于图像的点云生成和预处理[A];2011年全国通信安全学术会议论文集[C];2011年
2 蔡来良;李儒;;点云数据处理算法与实现初步研究[A];第四届“测绘科学前沿技术论坛”论文精选[C];2012年
3 马国庆;陶萍萍;杨周旺;;点云空间曲线的微分信息计算及匹配方法[A];第四届全国几何设计与计算学术会议论文集[C];2009年
4 江倩殷;刘忠途;李熙莹;;一种有效的点云精简算法[A];第十五届全国图象图形学学术会议论文集[C];2010年
5 解辉;张爱武;孟宪刚;;机载激光点云快速绘制方法[A];第二十五届全国空间探测学术研讨会摘要集[C];2012年
6 李凯;张爱武;;基于激光点云的粮仓储粮数量测量方法[A];第二届“测绘科学前沿技术论坛”论文精选[C];2010年
7 朱晓强;余烨;刘晓平;袁晓辉;Bill P.Buckles;;基于航拍图像和LiDAR点云的城市道路提取[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(上册)[C];2008年
8 刘虎;;基于线性八叉树的点云简化与特征提取研究[A];促进科技经济结合,服务创新驱动发展——蚌埠市科协2012年度学术年会论文集[C];2012年
9 李滨;王佳;;基于点云的建筑测绘信息提取[A];第四届“测绘科学前沿技术论坛”论文精选[C];2012年
10 杨雪春;;反求工程建模中点云切片技术研究[A];全国先进制造技术高层论坛暨第八届制造业自动化与信息化技术研讨会论文集[C];2009年
相关重要报纸文章 前2条
1 曹裕华 高化猛 江鸿宾;激光点云 亦真亦幻[N];解放军报;2013年
2 中国工程院院士 刘先林;四维远见的装备创新[N];中国测绘报;2012年
相关博士学位论文 前10条
1 彭检贵;融合点云与高分辨率影像的城区道路提取与表面重建研究[D];武汉大学;2012年
2 刘涌;基于连续序列自动快速拼接的全方位三维测量技术研究[D];西南交通大学;2013年
3 袁小翠;产品表面缺陷视觉检测数据处理关键技术研究[D];南昌大学;2015年
4 赖祖龙;基于LiDAR点云与影像的海岸线提取和地物分类研究[D];武汉大学;2013年
5 王瑞岩;计算机视觉中相机标定及点云配准技术研究[D];西安电子科技大学;2015年
6 韩峰;基于点云信息的既有铁路状态检测与评估技术研究[D];西南交通大学;2015年
7 金龙存;3D点云复杂曲面重构关键算法研究[D];上海大学;2012年
8 李扬彦;基于点云的三维重建与形变事件分析[D];中国科学院深圳先进技术研究院;2013年
9 杨德贺;面向虚拟测方系统的点云聚类与拟合理论[D];中国矿业大学(北京);2014年
10 何朝明;离散点云处理的关键技术研究[D];西南交通大学;2007年
相关硕士学位论文 前10条
1 龚硕然;基于Delaunay三角剖分的点云三维网格重构[D];河北大学;2015年
2 杨红粉;频域技术应用于点云配准研究[D];北京建筑大学;2015年
3 段红娟;点云图像交互式曲线骨架提取技术及其应用[D];西南交通大学;2015年
4 张永恒;散乱点云数据配准方法研究[D];长安大学;2015年
5 吴爱;面向特征拟合的点云简化方法研究[D];中国地质大学(北京);2015年
6 薛广顺;基于立体视觉的牛体点云获取方法研究与实现[D];西北农林科技大学;2015年
7 胡诚;精度约束下地表LiDAR点云抽稀方法研究[D];西南交通大学;2015年
8 余明;三维离散点云数据处理技术研究[D];南京理工大学;2015年
9 陈星宇;基于三维彩色点云的地形分类方法研究[D];南京理工大学;2015年
10 朱东方;基于复杂拓扑结构点云的曲线拟合研究与应用[D];山东大学;2015年
,本文编号:1666221
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1666221.html