基于数据挖掘的HSK成绩分析
本文选题:HSK 切入点:数据挖掘 出处:《华侨大学》2017年硕士论文
【摘要】:随着中国影响力的增加,汉语热的不段升温。HSK作为衡量母语非汉语者汉语水平的权威考试,规模也不断扩大,所留下的HSK成绩积累得越来越多。使用传统的方法对数据的信息进行分析的时候,只能得到数据表层的信息,对于数据各个属性之间的隐含信息以及联系都不能进行获取。而数据挖掘技术则能够从大量的数据中发现隐藏于其中的有用的知识和规则。本文围绕HSK成绩进行数据挖掘的分析研究,挖掘出影响留学生学好汉语的各种因素及其之间的关系。作者在文章中首先对数据挖掘技术中的相关概念进行了描述,然后对Apriori算法的概念、实现算法的相关步骤以及算法实现的具体规则进行了详细的介绍,之后对该算法在HSK成绩数据挖掘中的应用进行了介绍。研究对HSK考试数据进行预处理的方法并对笔者工作单位2011年-2015年HSK考试相关数据进行提取与预处理;自行编程实现了关联规则挖掘Apriori算法,对所提取的考试成绩数据进行关联规则挖掘,得出关联规则结果,分析影响考生成绩的各个因素的关系,为汉语的教学提供帮助。
[Abstract]:With the increase of China's influence, the popularity of the Chinese language heats up. HSK, as an authoritative test to measure the Chinese proficiency of non-native Chinese speakers, is also expanding in scale. The HSK scores left behind are accumulating more and more. When we use traditional methods to analyze the information of the data, we can only get the information from the surface layer of the data. The implicit information and the relation between each attribute of the data can not be obtained, while the data mining technology can find the useful knowledge and rules hidden in it from a large amount of data. This paper focuses on the achievement of HSK. Analysis and Research of data Mining, The author first describes the related concepts in data mining technology, and then describes the concept of Apriori algorithm. The relevant steps of the algorithm and the specific rules of the algorithm implementation are introduced in detail. Then the application of the algorithm in HSK score data mining is introduced. The method of preprocessing HSK test data is studied, and the relevant data of HSK examination from 2011 to 2015 are extracted and preprocessed. The Apriori algorithm of association rule mining is realized by self-programming. The result of association rule is obtained by mining the test score data, and the relationship between the factors that affect the result of examinee is analyzed so as to provide the help for the teaching of Chinese.
【学位授予单位】:华侨大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.13
【相似文献】
相关期刊论文 前10条
1 黄源,张福炎;数据挖掘及其技术实现[J];计算机应用与软件;2001年12期
2 香丽芸;浅谈数据挖掘及其应用[J];昌吉师专学报;2001年02期
3 郑雪燕,张杰明,岳洋;数据挖掘语言[J];计算机时代;2001年11期
4 刘明晶;数据挖掘[J];华南金融电脑;2001年04期
5 张伟;刘勇国;彭军;廖晓峰;吴中福;;数据挖掘发展研究[J];计算机科学;2001年07期
6 钟晓;马少平;张钹;俞瑞钊;;数据挖掘综述[J];模式识别与人工智能;2001年01期
7 朱建平,张润楚;数据挖掘的发展及其特点[J];统计与决策;2002年07期
8 傅岚;在数据海洋中打捞信息数据挖掘[J];科技广场;2002年11期
9 李峻;数据挖掘,企业洞察先机的“慧眼”[J];中国计算机用户;2002年48期
10 罗可,蔡碧野,卜胜贤,谢中科;数据挖掘及其发展研究[J];计算机工程与应用;2002年14期
相关会议论文 前10条
1 史东辉;蔡庆生;张春阳;;一种新的数据挖掘多策略方法研究[A];第十七届全国数据库学术会议论文集(研究报告篇)[C];2000年
2 张弦;;数据挖掘在农业中的应用[A];纪念中国农业工程学会成立30周年暨中国农业工程学会2009年学术年会(CSAE 2009)论文集[C];2009年
3 魏顺平;;教育数据挖掘:现状与趋势[A];信息化、工业化融合与服务创新——第十三届计算机模拟与信息技术学术会议论文集[C];2011年
4 关清平;沉培辉;;概率网络在数据挖掘上的应用[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
5 丁瑾;;基于Web数据挖掘的综述[A];山西省科学技术情报学会学术年会论文集[C];2004年
6 聂茹;田森平;;Web数据挖掘及其在电子商务中的应用[A];中南六省(区)自动化学会第24届学术年会会议论文集[C];2006年
7 李菊;王军;;数据挖掘在客户关系管理的应用[A];计算机技术与应用进展·2007——全国第18届计算机技术与应用(CACIS)学术会议论文集[C];2007年
8 肖阳;李启贤;;数据挖掘在中国钢铁行业中的应用[A];中国计量协会冶金分会2012年会暨能源计量与节能降耗经验交流会论文集[C];2012年
9 杨磊;王贵成;汪勇;张占胜;;SQL Server 2005在数据挖掘中的应用[A];2009年中国智能自动化会议论文集(第二分册)[C];2009年
10 谢中;邱玉辉;;面向商务网站有效性的数据挖掘方法[A];第十八届全国数据库学术会议论文集(技术报告篇)[C];2001年
相关重要报纸文章 前10条
1 本报记者褚宁;数据挖掘如“挖金”[N];解放日报;2002年
2 周蓉蓉;数据挖掘需要点想像力[N];计算机世界;2004年
3 □中国电信股份有限公司北京研究院 张舒博 □北京邮电大学计算机科学与技术学院 牛琨;走出数据挖掘的误区[N];人民邮电;2006年
4 《网络世界》记者 王莹;数据挖掘保险业的新蓝海[N];网络世界;2012年
5 刘俊丽;基于地理化的网络数据挖掘与分析提升投资有效性[N];人民邮电;2014年
6 本报记者 连晓东;数据挖掘:金融信息化新热点[N];中国电子报;2002年
7 本报记者 凤小华 朱仁康;“数字挖掘软件”引领中国信息化新浪潮[N];中国电子报;2003年
8 本报记者 史延廷;“成功企业数据挖掘暨数量化管理论坛”在京举办[N];中国旅游报;2002年
9 朱小宁;数据挖掘:信息化战争的基础工程[N];解放军报;2005年
10 本报记者 王小平;从“大集中”走向数据挖掘[N];金融时报;2002年
相关博士学位论文 前10条
1 于自强;海量流数据挖掘相关问题研究[D];山东大学;2015年
2 张馨;全基因组SNP芯片应用于CNV和L0H分析的软件比对与数据挖掘[D];复旦大学;2011年
3 彭计红;基于数据挖掘的痴呆中医证的研究[D];南京中医药大学;2015年
4 李秋虹;基于MapReduce的大规模数据挖掘技术研究[D];复旦大学;2013年
5 邬文帅;基于多目标决策的数据挖掘方法评估与应用[D];电子科技大学;2015年
6 谢邦彦;整合数据挖掘与TRIZ理论的质量管理方法研究[D];首都经济贸易大学;2010年
7 何伟全;云南高校学生意外伤害因素关联规则挖掘及风险管控体系研究[D];昆明理工大学;2015年
8 段功豪;基于多结构数据挖掘的滑坡灾害预测模型研究[D];中国地质大学;2016年
9 白晓明;基于数据挖掘的复合材料宏—细观力学模型研究[D];哈尔滨工业大学;2016年
10 蓝永豪(LAM Wing Ho);基于数据挖掘技术分析当代中医名家痤疮验方经验研究[D];南京中医药大学;2016年
相关硕士学位论文 前10条
1 林仁红;基于数据挖掘的机遇识别与评价研究[D];首都经济贸易大学;2007年
2 张彦俊;游戏运营中的数据挖掘[D];复旦大学;2011年
3 焦亚召;基于多核函数FCM算法在数据挖掘聚类中的应用研究[D];昆明理工大学;2015年
4 王杰锋;物联网能耗数据智能分析及其应用平台设计[D];江南大学;2015年
5 刘学建;数据挖掘在电子商务推荐系统中的应用研究[D];昆明理工大学;2015年
6 戴阳阳;基于数据挖掘的金融时间序列预测研究与应用[D];江南大学;2015年
7 石思优;基于主题模型的医疗数据挖掘研究[D];广东技术师范学院;2015年
8 陈丹;移动互联网信令挖掘实现智慧营销的设计与实现应用研究[D];华南理工大学;2015年
9 陈思;基于数据挖掘的大学生客户识别模型的研究[D];昆明理工大学;2015年
10 位长帅;基于客户数据挖掘的电信客户关系管理研究[D];西南交通大学;2015年
,本文编号:1668837
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1668837.html