基于随机森林的频谱域光学相干层析技术的图像视网膜神经纤维层分割
发布时间:2018-03-28 04:32
本文选题:频域光学相干层技术 切入点:青光眼 出处:《电子与信息学报》2017年05期
【摘要】:频谱域光学相干层析技术是一种广泛应用于眼科疾病诊断的成像技术,而视网膜层分割对青光眼的诊断有很好的参考价值。该文利用随机森林分类器寻找视网膜层间单像素宽的边界,随机森林分类器由12个特征训练产生,其中相对灰度特征和邻域特征较好地解决灰度不均匀的分割误差大问题。对10组带有青光眼病变的视网膜图像进行分割,并与传统算法和Iowa软件进行比较,平均边界绝对误差为9.20±2.57μm,11.33±2.99μm和10.27±3.01μm。实验结果表明,改进算法可以较好地分割视网膜神经纤维层。
[Abstract]:Spectral domain optical coherence tomography (OCS) is a widely used imaging technique for the diagnosis of ophthalmic diseases. The retinal layer segmentation has a good reference value for the diagnosis of glaucoma. In this paper, a random forest classifier is used to find the boundary between the retinal layers with a single pixel width. The random forest classifier is generated by 12 feature training. The relative grayscale feature and neighborhood feature can solve the problem of big error of uneven grayscale segmentation. Ten groups of retinal images with glaucoma are segmented and compared with the traditional algorithm and Iowa software. The average boundary absolute error is 9.20 卤2.57 渭 m 11.33 卤2.99 渭 m and 10.27 卤3.01 渭 m respectively. The experimental results show that the improved algorithm can segment the retinal nerve fiber layer well.
【作者单位】: 南京理工大学计算机科学与工程学院;福建省信息处理与智能控制重点实验室(闽江学院);济南大学信息科学与工程学院;
【基金】:国家自然科学基金(61671242) 中央高校基本科研业务费专项资金(30920140111004) 六大人才高峰(2014-SWYY-024) 福建省信息处理与智能控制重点实验室(闽江学院)开放课题基(MJUKF201706)~~
【分类号】:TP391.41;R770.4
,
本文编号:1674787
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1674787.html