基于多模光纤光斑检测的传感技术研究
发布时间:2018-04-01 23:18
本文选题:光斑检测 切入点:图像处理 出处:《北京交通大学》2017年硕士论文
【摘要】:随着计算机技术、数字信号处理技术和光电探测器件的不断发展和进步,基于光纤光斑检测的各项技术的复杂程度和成本大幅降低,促进了光纤光斑检测在传感等研究领域的发展。多模光纤由于具有较大的芯径,支持大量对外界变化非常敏感的高阶模式,使基于多模光纤结构的光斑检测技术具有很高的应用价值。本文对多模光纤光斑检测技术新的应用场景和光斑图像处理技术展开了研究,获得的主要研究成果如下:针对目前模式分析领域,解析法对波导结构要求很高,而数值分析方法存在着计算精度和计算机性能之间相互制约的局限性,本文将图像处理技术中灰度共生矩阵引入光斑处理算法中,提出了基于光斑图像灰度共生矩阵对波导模式数量进行分析的方法,详细分析了多模光纤中支持不同模式数量时光纤端面光斑与图像灰度共生矩阵特征值的关系,得到了模式数量和灰度共生矩阵特征值能量(energy)、一致性(homogeneity)之间的近似线性关系,并进行了实验验证,之后将这一结论应用于对光纤内模式数量的定性分析。通过利用单模-多模结构中两种光纤偏移量的不同来模拟进行微位移传感的方式,对光斑图像中灰度共生矩阵特征值与位移量的关系进行了研究。并利用此方法同时对具有不同弯曲半径的光纤的输出光斑进行了研究。由于两种光纤不同偏移对接情况和不同弯曲情况下在多模光纤中激发出的模式数量不同,根据多模光纤光斑的灰度共生矩阵特征值能量和一致性与光纤中激发出的模式数量近似呈线性关系的结论,对偏移量和弯曲半径与光斑图像灰度共生矩阵特征值之间的关系进行了仿真分析与实验验证,获得了两个特征值能量和一致性与不同光纤相对位移量和不同弯曲半径呈近似线性的关系,从而表明,可以通过对多模光纤光斑图像灰度矩阵特征值能量和一致性对位移量和弯曲半径进行定量分析来实现光纤微位移传感和光纤弯曲传感的研究。
[Abstract]:With the continuous development and progress of computer technology, digital signal processing technology and photodetectors, the complexity and cost of various technologies based on optical fiber spot detection have been greatly reduced. It promotes the development of optical spot detection in sensing and other fields. Because of its large core diameter, multimode optical fiber supports a large number of high order modes which are sensitive to external changes. It makes the spot detection technology based on multimode optical fiber structure have high application value. In this paper, the new application scene and image processing technology of multimode optical fiber spot detection technology are studied. The main research results obtained are as follows: in the field of mode analysis, the analytical method requires the waveguide structure very high, but the numerical analysis method has the limitation of the mutual restriction between the calculation precision and the computer performance. In this paper, the gray level co-occurrence matrix in image processing is introduced into the spot processing algorithm, and a method to analyze the number of waveguide modes based on the gray level co-occurrence matrix of the spot image is proposed. In this paper, the relationship between the number of optical fiber facets and the eigenvalues of gray level co-occurrence matrix in multimode optical fiber is analyzed in detail, and the approximate linear relationship between the number of patterns and eigenvalues of gray co-occurrence matrix energy energy, consistency homogeneityis obtained. This conclusion is applied to the qualitative analysis of the number of internal modes in the fiber. By using the difference between the two optical fiber offsets in the single-mode and multi-mode structure, the method of micro-displacement sensing is simulated. The relationship between the eigenvalues of gray level co-occurrence matrix and displacement in spot image is studied. The output spot of fiber with different bending radius is also studied by using this method. The number of modes excited in multimode optical fibers varies from case to case and under different bending conditions, According to the conclusion that the eigenvalue energy and consistency of gray level co-occurrence matrix of multimode optical fiber spot are approximately linear with the number of modes excited in the optical fiber. The relationship between offset and bending radius and the eigenvalue of gray level co-occurrence matrix of spot image is simulated and verified by experiments. The energy and consistency of the two eigenvalues are approximately linear with the relative displacement and bending radius of different optical fibers. The research of fiber micro displacement sensor and fiber bending sensor can be realized by quantitative analysis of displacement and bending radius through the energy and consistency of grayscale matrix eigenvalue of multimode optical fiber spot image.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前3条
1 李强;黄泽铗;徐雅芹;张凌云;史骥;王智;;基于单模-多模-单模光纤模间干涉的传感系统[J];红外与激光工程;2014年05期
2 何伟刚;;基于改进的四叉树Sobel算子图像分割研究[J];计算机仿真;2012年04期
3 杨春;张华勇;张敏;廖延彪;;光纤水听器时分复用检测电路带宽与串扰分析[J];光电工程;2010年07期
相关硕士学位论文 前6条
1 吴红梅;基于CCD的激光光斑检测系统的设计[D];黑龙江大学;2014年
2 刘友江;VCH-F2腹腔切片图像分割技术研究[D];重庆交通大学;2013年
3 申晓军;粒子群算法在混合尺寸泡沫图像分割中的应用[D];中南大学;2010年
4 吴雷;基于多模光纤声发射检测的理论与实验研究[D];哈尔滨工程大学;2009年
5 叶艳芳;城区复杂背景条件下的车辆检测算法研究[D];重庆大学;2008年
6 焦凤萍;合成孔径雷达图像的预处理方法研究[D];安徽大学;2007年
,本文编号:1697744
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1697744.html