当前位置:主页 > 科技论文 > 软件论文 >

基于多模式分类算法的棉花异性纤维自动检测系统的设计与实现

发布时间:2018-04-22 17:40

  本文选题:异性纤维 + 自动检测系统 ; 参考:《河南科技大学》2017年硕士论文


【摘要】:近年来,由于全国棉花市场管理混乱,所收购的棉花中异性纤维严重超标,极大地影响了棉纺织产品的质量,从而也影响了我国棉纺行业的国内外的信誉,使棉纺织出口受到了很大的阻力。国外清除异纤的设备价格昂贵,且检出效果并不理想,国内有些企业虽已推出产品,但效果不好。为此,研制棉花异性纤维自动检测系统来改进棉花初步加工工艺,提高棉纺织品的成品质量,降低产品成本具有非常实际、重要的意义,同时也具有很好的市场价值和发展前景。本文在介绍了异性纤维分拣系统研究的背景及发展状况下,提出了以计算机图像处理技术为基础的异性纤维分拣算法,并对该算法的实现进行了比较深入的分析和研究,通过严格论证与分析,建立了图像处理的数学模型,即棉花在RGB空间的三维颜色数学模型,利用特征分析与类型归纳法,提出了针对普通异性纤维非线性双阈值算法和针对细小杂质的基于微分的图像处理算法相结合,提高了图形处理的效率,保证系统根据采集到的图像数据能够快速、准确的作出判断。实现了对白色丙纶丝和头发丝等细小杂质两方面检测的突破。而对于硬软件部分的实现则是合理搭建硬件系统平台,尤其是在相机的非线性问题的解决及光源的选择上,通过大量的实验以求得最佳的信号输入,使由硬件系统带来的不利因素达到了最小化。而软件系统则利用Visual C++6.0编制,在图像采集卡、CCD摄像机、C8051F340单片机等硬件基础上,充分发挥机器视觉技术的优势,实现了棉花异纤的在线、实时、高精度、非接触快速的动态检测及分拣。体现出了作为现代科学技术热点领域的机器视觉技术的诸多优点。最终经过多次现场调试,证明该系统具有检测速度快、分拣率高的特点。系统完全满足工业检测的要求。通过本文研究工作,研制并开发出具有自主知识产权的棉花异性纤维在线实时分拣系统,并使之成为应用于现场的工业级机器视觉在线检测设备。
[Abstract]:In recent years, due to the confusion in the management of the national cotton market, the heterosexual fibers in the cotton purchased have seriously exceeded the standard, which has greatly affected the quality of cotton textile products, thus affecting the domestic and foreign reputation of the cotton textile industry in our country. Cotton textile exports are subject to great resistance. The price of foreign equipment for removing foreign fibers is expensive, and the detection effect is not satisfactory. Some domestic enterprises have launched products, but the effect is not good. Therefore, it is of great practical and important significance to develop an automatic testing system for cotton heterosexual fibers to improve the preliminary processing process of cotton, to improve the quality of finished products of cotton textiles, and to reduce the cost of the products. At the same time also has a good market value and development prospects. In this paper, the background and development of heterosexual fiber sorting system are introduced, and an algorithm of heterosexual fiber sorting based on computer image processing technology is put forward, and the realization of this algorithm is analyzed and studied deeply. Through strict demonstration and analysis, the mathematical model of image processing, that is, the 3D color mathematical model of cotton in RGB space, is established, and the method of feature analysis and type induction is used. A nonlinear double threshold algorithm for ordinary anisotropic fibers and a differential based image processing algorithm for fine impurities are proposed to improve the efficiency of graphics processing and ensure that the system can be fast according to the collected image data. Make an accurate judgment. A breakthrough was achieved in the detection of fine impurities such as white polypropylene filament and hair filament. For the hardware and software part, the hardware system platform is set up reasonably, especially in solving the nonlinear problem of the camera and the choice of the light source, through a large number of experiments to obtain the best signal input. Minimize the disadvantages caused by the hardware system. The software system is programmed by Visual C 6.0, based on the hardware such as C8051F340 single chip computer and so on, and the advantages of machine vision technology are brought into full play. The on-line, real-time and high precision of cotton fiber are realized. Non-contact fast dynamic detection and sorting. It embodies many advantages of machine vision technology, which is a hot field of modern science and technology. Finally, after many field debugging, it is proved that the system has the characteristics of fast detection speed and high sorting rate. The system fully meets the requirements of industrial inspection. Through the research work in this paper, a cotton heterosexual fiber on-line real-time sorting system with independent intellectual property rights has been developed, and it has become an industrial machine vision on-line testing equipment applied in the field.
【学位授予单位】:河南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS103.61;TP391.41

【参考文献】

相关期刊论文 前10条

1 吴明会;张宇波;;棉花异性纤维在线检测系统研究与实现[J];科学技术与工程;2016年20期

2 彭波;黄莎玲;李东杰;;Detection of colorless plastic contaminants hidden in cotton layer using chromatic polarization imaging[J];Chinese Optics Letters;2015年09期

3 W.Kiechl;朱鹏程;;棉花中白色丙纶异纤的检测方法[J];国际纺织导报;2015年06期

4 王欣;李道亮;杨文柱;李振波;;基于可见光机器视觉的棉花伪异性纤维识别方法[J];农业机械学报;2015年08期

5 张志权;孙晓东;;成包皮棉异性纤维检验的体会[J];中国纤检;2015年03期

6 马薇;;乌斯特推出新型异纤检测系统[J];纺织机械;2015年01期

7 刘军民;夏彬;桑小田;秦建锋;;基于边缘检测的棉花杂质图像分割方法比较与分析[J];中国棉花;2014年12期

8 杜玉红;王加富;蒋秀明;周国庆;罗永恒;;应用聚类统计分析的棉花异纤图形检测算法[J];纺织学报;2015年03期

9 刘翔;何相呈;苏真伟;刘锋;王冬;顾其彪;;棉花中白色异性纤维的激光成像快速检测方法[J];农业工程学报;2014年15期

10 郭静;罗华;张涛;;机器视觉与应用[J];电子科技;2014年07期

相关硕士学位论文 前4条

1 郑文秀;棉花异性纤维的动态识别技术研究[D];山东农业大学;2009年

2 卞铭;机器视觉在在线检测中的应用[D];合肥工业大学;2006年

3 杜春燕;异性纤维检测系统的研究及其软件实现[D];北京工业大学;2004年

4 孙庆;基于点云的二次曲面特征提取理论和技术研究[D];浙江大学;2003年



本文编号:1788256

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1788256.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户000a6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com