用户属性加权活跃近邻的协同过滤算法
本文选题:协同过滤 + 相似度 ; 参考:《计算机应用研究》2016年12期
【摘要】:针对现有的基于KNN近邻协同过滤技术,在选择最近邻居时过于依赖评分相似度的问题,提出了一种用户属性加权活跃近邻的协同过滤算法。首先,通过引入用户特征属性并融合最小权重相似度,根据所得的最终相似度生成目标用户的KNN近邻集。然后,从对目标项目已有反馈信息的用户中生成目标项目的活跃用户子群体,并筛选出KNN近邻集中的活跃用户子群体作为目标用户的活跃近邻集,最终产生评分预测。在公开数据集上的实验结果表明,该算法能有效地提高推荐算法的推荐准确度,具有更好的稳定性。
[Abstract]:Aiming at the existing cooperative filtering technology based on KNN nearest neighbor and relying too much on score similarity in selecting nearest neighbor, a collaborative filtering algorithm with weighted active nearest neighbor for user attributes is proposed. Firstly, the KNN nearest neighbor set of the target user is generated according to the final similarity by introducing the user characteristic attribute and merging the minimum weight similarity. Then, the active user subgroup of the target item is generated from the users who have feedback information on the target item, and the active user subgroup in the KNN nearest neighbor set is selected as the active nearest neighbor set of the target user, and finally the score prediction is generated. Experimental results on open datasets show that the proposed algorithm can effectively improve the recommendation accuracy and has better stability.
【作者单位】: 江西理工大学信息工程学院;
【基金】:国家自然科学基金资助项目(71462018) 江西省研究生创新专项基金资助项目(YC2014-S371)
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 杨风召;;一种基于特征表的协同过滤算法[J];计算机工程与应用;2007年06期
2 王岚;翟正军;;基于时间加权的协同过滤算法[J];计算机应用;2007年09期
3 曾子明;张李义;;基于多属性决策和协同过滤的智能导购系统[J];武汉大学学报(工学版);2008年02期
4 张富国;;用户多兴趣下基于信任的协同过滤算法研究[J];小型微型计算机系统;2008年08期
5 侯翠琴;焦李成;张文革;;一种压缩稀疏用户评分矩阵的协同过滤算法[J];西安电子科技大学学报;2009年04期
6 廖新考;;基于用户特征和项目属性的混合协同过滤推荐[J];福建电脑;2010年07期
7 沈磊;周一民;李舟军;;基于心理学模型的协同过滤推荐方法[J];计算机工程;2010年20期
8 徐红;彭黎;郭艾寅;徐云剑;;基于用户多兴趣的协同过滤策略改进研究[J];计算机技术与发展;2011年04期
9 焦晨斌;王世卿;;基于模型填充的混合协同过滤算法[J];微计算机信息;2011年11期
10 郑婕;鲍海琴;;基于协同过滤推荐技术的个性化网络教学平台研究[J];科技风;2012年06期
相关会议论文 前10条
1 沈杰峰;杜亚军;唐俊;;一种基于项目分类的协同过滤算法[A];第二十二届中国数据库学术会议论文集(技术报告篇)[C];2005年
2 周军锋;汤显;郭景峰;;一种优化的协同过滤推荐算法[A];第二十一届中国数据库学术会议论文集(研究报告篇)[C];2004年
3 董全德;;基于双信息源的协同过滤算法研究[A];全国第20届计算机技术与应用学术会议(CACIS·2009)暨全国第1届安全关键技术与应用学术会议论文集(上册)[C];2009年
4 张光卫;康建初;李鹤松;刘常昱;李德毅;;面向场景的协同过滤推荐算法[A];中国系统仿真学会第五次全国会员代表大会暨2006年全国学术年会论文集[C];2006年
5 李建国;姚良超;汤庸;郭欢;;基于认知度的协同过滤推荐算法[A];第26届中国数据库学术会议论文集(B辑)[C];2009年
6 王明文;陶红亮;熊小勇;;双向聚类迭代的协同过滤推荐算法[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年
7 胡必云;李舟军;王君;;基于心理测量学的协同过滤相似度方法(英文)[A];NDBC2010第27届中国数据库学术会议论文集(B辑)[C];2010年
8 林丽冰;师瑞峰;周一民;李月雷;;基于双聚类的协同过滤推荐算法[A];2008'中国信息技术与应用学术论坛论文集(一)[C];2008年
9 罗喜军;王韬丞;杜小勇;刘红岩;何军;;基于类别的推荐——一种解决协同推荐中冷启动问题的方法[A];第二十四届中国数据库学术会议论文集(研究报告篇)[C];2007年
10 黄创光;印鉴;汪静;刘玉葆;王甲海;;不确定近邻的协同过滤推荐算法[A];NDBC2010第27届中国数据库学术会议论文集A辑一[C];2010年
相关博士学位论文 前10条
1 纪科;融合上下文信息的混合协同过滤推荐算法研究[D];北京交通大学;2016年
2 李聪;电子商务推荐系统中协同过滤瓶颈问题研究[D];合肥工业大学;2009年
3 郭艳红;推荐系统的协同过滤算法与应用研究[D];大连理工大学;2008年
4 罗恒;基于协同过滤视角的受限玻尔兹曼机研究[D];上海交通大学;2011年
5 薛福亮;电子商务协同过滤推荐质量影响因素及其改进机制研究[D];天津大学;2012年
6 高e,
本文编号:1788539
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1788539.html