成人学习者的在线学习行为建模研究
本文选题:在线学习行为 + 学习分析 ; 参考:《北京邮电大学》2016年硕士论文
【摘要】:随着社会对人才素质要求的不断提高,越来越多的成人选择在线学习作为其进行继续教育和终身教育的主要手段。同时,互联网和信息技术的飞速发展也促使个性化学习成为“互联网教育”发展的必然趋势。在线学习产生了海量且复杂的学习行为数据。如何运用智能技术和自动工具帮助我们处理和分析这些“大数据”,如何获得数据中隐含的学习者特征和内在联系,并运用这些结论个性化服务于学习者,促进其有效学习成为目前研究的重点。本文首先阐述了成人学习者在线学习行为的研究背景及意义,然后对在线学习行为以及学习分析的国内外现状进行了综合介绍与简要述评,通过了解在线学习领域的最新发展,为面向成人学习者的研究提供指导和依据。接着对论文研究的支撑理论,建构主义学习理论和成人学习理论等进行阐述;对在线学习行为、个性化学习、学习分析等相关概念进行阐释,以此指导模型的构建。本文通过对成人学习者范畴的界定,分析成人学习者学习行为特征,从学习者基本信息、学习风格、认知水平、行为模式等四方面划分了成人学习者特征,构建了新的成人学习者模型。基于以学习者为中心的构建思想,从四个维度,即学习过程、学习环境、学习分析、个性化应用服务等四方面构建学习行为分析模型,实现个性化学习、个性化教学和个性化学习环境的建设。从而为之后个性化学习系统的功能设计做参考依据。最后,基于北京邮电大学Sakai网络教学平台,以平台中的现有学习者(成人学习者)作为对象,通过模型的指导,设计个性化学习系统功能。包括系统记录数据的分析、可视化展示以及个性化推荐与个性化学习反馈功能,实现个性化的资源与学习支持服务的推送。本研究旨在通过构建和梳理成人学习者模型和学习行为分析模型,为个性化学习系统的功能建设提供参考,希望成人学习者能通过在线学习,满足学习需求,达到个性化学习,提升学习效率。
[Abstract]:With the continuous improvement of the quality of talents, more and more adults choose online learning as their main means of continuing education and lifelong education. At the same time, the rapid development of Internet and information technology also promotes individualized learning to become the inevitable trend of the development of Internet education. Online learning produces massive and complex learning behavior data. How to use intelligent technology and automatic tools to help us deal with and analyze these "big data", how to obtain the implicit learner characteristics and internal relations in the data, and how to use these conclusions to individualize the learners. To promote their effective learning has become the focus of current research. This paper first introduces the background and significance of adult learners' online learning behavior, and then gives a comprehensive introduction and a brief review of the online learning behavior and learning analysis at home and abroad, through the understanding of the latest development of online learning field. To provide guidance and basis for adult learners. Then the supporting theory, constructivism learning theory and adult learning theory of the thesis are expounded, and the related concepts such as online learning behavior, personalized learning and learning analysis are explained to guide the construction of the model. By defining the category of adult learners, this paper analyzes the characteristics of learning behaviors of adult learners, and classifies the characteristics of adult learners from four aspects: learners' basic information, learning style, cognitive level and behavior pattern. A new adult learner model was constructed. Based on the learner-centered construction idea, this paper constructs a learning behavior analysis model from four dimensions, namely, learning process, learning environment, learning analysis and personalized application service, to realize individualized learning. The construction of individualized teaching and individualized learning environment. So as to make reference for the function design of the individualized learning system. Finally, based on the Sakai network teaching platform of Beijing University of posts and Telecommunications, taking the existing learners (adult learners) in the platform as the object, the function of the personalized learning system is designed under the guidance of the model. Including the system record data analysis, visual display and personalized recommendation and personalized learning feedback function, to achieve personalized resources and learning support services push. The purpose of this study is to provide reference for the functional construction of individualized learning system by constructing and combing the adult learner model and learning behavior analysis model. It is hoped that adult learners can meet their learning needs and achieve personalized learning through online learning. Improve learning efficiency.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:G434;G720
【参考文献】
相关期刊论文 前10条
1 王良周;于卫红;;大数据视角下的学习分析综述[J];中国远程教育;2015年03期
2 姜强;赵蔚;王朋娇;王丽萍;;基于大数据的个性化自适应在线学习分析模型及实现[J];中国电化教育;2015年01期
3 花燕锋;张龙革;;基于MOOCs的多元同心学习分析模型构建[J];远程教育杂志;2014年05期
4 武法提;牟智佳;;电子书包中基于大数据的学生个性化分析模型构建与实现路径[J];中国电化教育;2014年03期
5 张进良;何高大;;学习分析:助推大数据时代高校教师在线专业发展[J];远程教育杂志;2014年01期
6 朱珂;刘清堂;;基于“学习分析”技术的学习平台开发与应用研究[J];中国电化教育;2013年09期
7 李艳燕;马韶茜;黄荣怀;;学习分析技术:服务学习过程设计和优化[J];开放教育研究;2012年05期
8 黄荣怀;杨俊锋;胡永斌;;从数字学习环境到智慧学习环境——学习环境的变革与趋势[J];开放教育研究;2012年01期
9 顾小清;张进良;蔡慧英;;学习分析:正在浮现中的数据技术[J];远程教育杂志;2012年01期
10 李玉斌;严雪松;姚巧红;褚芸芸;南丽岚;;网络学习行为模型的建构与实证——基于在校大学生的调查[J];电化教育研究;2012年02期
相关硕士学位论文 前2条
1 李素珍;基于网络学习行为分析的网络学习风格与学习偏好挖掘模型研究[D];华中师范大学;2009年
2 杨鸿宾;数据挖掘在个性化网络教学平台中的应用研究[D];首都师范大学;2005年
,本文编号:1811388
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1811388.html