当前位置:主页 > 科技论文 > 软件论文 >

深度递归的层次化机器翻译模型

发布时间:2018-04-30 13:22

  本文选题:循环神经网络 + 递归神经网络 ; 参考:《计算机学报》2017年04期


【摘要】:深度学习在自然语言处理中有很多的应用.深度网络的主要作用是捕获隐藏在语言结构中更深的语义信息.该文出发点为根据原有句子中的对齐作为深度网络生成结构的指导,并融合原有深度翻译模型的优点,提出了深度递归的层次化机器翻译模型.相对于已有的神经翻译模型来说,更好地结合了层次化的翻译过程,同时这种方法结合循环神经网络和递归神经网络的优点.层次化规则的归纳包含两个部分:短语的归纳和形式化规则的归纳,而在该文的建模过程中模拟了这两个部分且符合归纳过程.该文在训练中采用单词级语义错误、单语短语/规则语义错误和双语短语/规则语义错误构造目标函数,训练中能够更好平衡语义中3个部分的影响,同时考虑到对齐信息以指导层次化深度神经网络的训练.在解码过程中通过生成部分翻译结果的语义向量,最终得到句子间的语义关系,这样可以在语法结构中加入语义信息,克服了原有层次化模型语义信息缺乏的问题.该模型的实验结果说明了深度递归的层次化机器翻译模型的有效性,相对于经典的基线系统提高了1.49~1.84BLEU分数.
[Abstract]:Deep learning has many applications in natural language processing. The main function of the depth network is to capture the deeper semantic information hidden in the language structure. This paper proposes a hierarchical machine translation model with depth recursion, which is guided by the alignment in the original sentence as the generation structure of the depth network, and combines the advantages of the original depth translation model. Compared with the existing neural translation models, the hierarchical translation process is better combined with the advantages of cyclic neural networks and recurrent neural networks. The induction of hierarchical rules consists of two parts: inductive of phrases and induction of formal rules. In the modeling process of this paper, the two parts are simulated and accord with the inductive process. In this paper, word-level semantic errors, monolingual phrase / rule semantic errors and bilingual phrase / rule semantic errors are used to construct objective functions in the training. At the same time, the alignment information is taken into account to guide the training of hierarchical depth neural networks. In the process of decoding, the semantic relationship between sentences can be obtained by generating the semantic vector of some translation results, which can add semantic information to the grammatical structure and overcome the lack of semantic information in the original hierarchical model. The experimental results show that the hierarchical machine translation model with deep recursion is effective and improves the 1.49~1.84BLEU score compared with the classical baseline system.
【作者单位】: 哈尔滨工程大学计算机科学与技术学院;哈尔滨理工大学软件学院;
【基金】:国家自然科学基金(61300115) 中国博士后科学基金(2014M561331) 黑龙江省教育厅科技研究项目(12521073)资助~~
【分类号】:TP183;TP391.2

【相似文献】

相关期刊论文 前10条

1 金仁贵;;带有偏差单元的递归神经网络在故障诊断方面的应用[J];电脑知识与技术;2006年29期

2 陈钢;王占山;;连续时间递归神经网络的稳定性分析[J];沈阳理工大学学报;2007年02期

3 汪晓梦;;带有偏差单元的递归神经网络在故障诊断方面的应用优化[J];甘肃联合大学学报(自然科学版);2010年05期

4 杜艳可;徐瑞;;具有时滞的递归神经网络动力学研究进展[J];北华大学学报(自然科学版);2012年01期

5 蒋洪睿,莫玮,李丽;递归神经网络自适应均衡抗突发干扰研究[J];电讯技术;2000年01期

6 宋轶民,余跃庆,张策,马文贵;动态递归神经网络及其在机敏机构辨识中的应用[J];机械科学与技术;2001年04期

7 张奇志,贾永乐,周雅莉;噪声有源控制的递归神经网络方法[J];控制与决策;2001年03期

8 李峰,李树荣;基于动态递归神经网络的动态矩阵控制[J];石油大学学报(自然科学版);2001年03期

9 唐普英,李绍荣,黄顺吉;一种新的复值递归神经网络训练方法及其应用[J];信号处理;2001年06期

10 文敦伟,蔡自兴;递归神经网络的模糊随机学习算法[J];高技术通讯;2002年01期

相关会议论文 前10条

1 房毅宪;王宝文;王永茂;;基于偏差递归神经网络的股价预测(英文)[A];计算机技术与应用进展——全国第17届计算机科学与技术应用(CACIS)学术会议论文集(上册)[C];2006年

2 刘勇;沈毅;胡恒章;;递归神经网络自适应滤波器[A];1998年中国智能自动化学术会议论文集(上册)[C];1998年

3 赵英凯;蔡宁;;基于对角递归神经网络的肟化投酮量在线预估[A];1998年中国智能自动化学术会议论文集(上册)[C];1998年

4 李树荣;李峰;;基于动态递归神经网络的非线性系统重构[A];1998年中国控制会议论文集[C];1998年

5 史志伟;韩敏;;应用递归神经网络建立非线性结构系统模型[A];第二十三届中国控制会议论文集(下册)[C];2004年

6 丛爽;戴谊;;递归神经网络逼近性能的研究[A];'2006系统仿真技术及其应用学术交流会论文集[C];2006年

7 吕进;郭晨;刘雨;;基于不完全递归神经网络的二阶导数多步预测模糊控制及应用[A];2007年中国智能自动化会议论文集[C];2007年

8 蒲兴成;;时变时滞不确定递归神经网络渐近稳定的一个充分条件[A];2008’“先进集成技术”院士论坛暨第二届仪表、自动化与先进集成技术大会论文集[C];2008年

9 仉宝玉;吴志敏;;基于对角递归神经网络的智能PID控制[A];'2003系统仿真技术及其应用学术交流会论文集[C];2003年

10 沈艳;谢美萍;;基于递归神经网络的船舶运动极短期建模预报[A];第二届全国信息获取与处理学术会议论文集[C];2004年

相关博士学位论文 前10条

1 赵永昌;一类时滞静态递归神经网络的动力学行为研究[D];中国海洋大学;2010年

2 高海宾;扰动作用下递归神经网络稳定性研究[D];燕山大学;2006年

3 黄玉娇;具有广义分段线性激活函数的递归神经网络的多稳定性分析[D];东北大学;2014年

4 徐东坡;递归神经网络梯度学习算法的收敛性[D];大连理工大学;2009年

5 于佳丽;递归神经网络的连续吸引子与模糊控制[D];电子科技大学;2009年

6 王芬;递归神经网络的动力学行为分析[D];武汉科技大学;2011年

7 季策;时滞递归神经网络的动态特性研究[D];东北大学;2005年

8 徐军;递归神经网络稳定性分析[D];浙江大学;2007年

9 张锐;几类递归神经网络的稳定性及其应用研究[D];东北大学;2010年

10 张益军;时滞递归神经网络稳定性分析及网络化同步控制[D];东华大学;2008年

相关硕士学位论文 前10条

1 柳玉华;一种递归神经网络方法研究及其在非线性系统跟踪控制中的应用[D];江西理工大学;2015年

2 罗威威;全局指数稳定的递归神经网络的鲁棒性分析[D];中国矿业大学;2015年

3 杨渺渺;具有时滞的递归神经网络稳定性分析[D];电子科技大学;2015年

4 崔志超;基于产品特征的中文评论情感分析系统设计与实现[D];河北科技大学;2015年

5 余仕敏;基于递归神经网络的广告点击率预估[D];浙江理工大学;2016年

6 宛立达;基于振动信号分析的故障诊断理论与应用[D];东北石油大学;2010年

7 李克强;基于Spark的大规模RNNLM系统[D];江苏大学;2016年

8 谢伟浩;基于多尺度时间递归神经网络的人群异常检测[D];广东工业大学;2016年

9 曹成远;基于深度学习的蛋白质残基相互作用预测[D];苏州大学;2016年

10 梁军;基于深度学习的文本特征表示及分类应用[D];郑州大学;2016年



本文编号:1824724

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1824724.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户57c97***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com