当前位置:主页 > 科技论文 > 软件论文 >

云导风计算中结合局部特征的区域匹配算法研究

发布时间:2018-05-04 10:08

  本文选题:云导风 + 局部特征提取 ; 参考:《山东大学》2017年硕士论文


【摘要】:气象数值预报,是一个与科技民生息息相关的领域,随着气象卫星技术的不断进步,得到的资料也越来越丰富,气象数值预报也从依赖专业人员的经验,转而利用各类图像处理技术,使结果更加客观,更加精准。云导风技术主要指利用连续时序的卫星云图,捕捉云图上示踪云团的运动轨迹以反演风场的过程,是气象数值预报的一个重要信息来源,尤其是对于较为偏远且气象监控站点稀缺的地区。目前主流方法是基于相关度计算的模板匹配方法。然而云团的运动属于非刚性物体的半流体运动,目前来讲,并没有一个相对成熟的计算模型,现有的计算方法主要利用区域匹配,对模板在搜索区域内进行相关度计算得到云团位移,并没有充分考虑云团特征,对于有旋风带来的云团旋转并不能够很好的适应,并存在搜索方式计算量较大、对人工依然有很大依赖等缺点,因此该方向依然有很大的挖掘空间和探索价值。本文为了更好地捕捉云团运动规律,提高云导风计算效率,考虑将SIFT算法得到的特征点在前后云图上的分布规律作为云团局部特征信息,并结合到模板匹配中,是对云导风技术的一个新的尝试。SIFT算法可以有效克服尺度变化、旋转、亮度变化等影响,因此,由SIFT算法产生的特征点可以代表云团运动并对云团局部特征进行描述。在本文中,为了避免由于云团不确定运动带来的干扰,本算法没有直接选用特征点的匹配距离作为移动矢量,而是以特征点分布情况作为云团的局部特征代表,将模板匹配与局部特征结合,一方面可以避免对于云团局部存在平滑区域所造成的特征点难以检测,另一方面利用局部特征区域直接匹配,有效缩减模板匹配时遍历搜索过程的计算量。实验结果表明,基于局部特征的区域匹配算法能够适应云团的各类变化,也能够基于特征点分布得到一定的有旋风旋转信息,并且相较于传统算法能够获取更多的风矢量信息。尤其对于高分辨率的卫星图像,在保证一定准确性的同时,能够使计算效率大幅提升。
[Abstract]:The meteorological numerical forecast is a field closely related to the people's livelihood of science and technology. With the continuous progress of meteorological satellite technology, the data obtained are more and more abundant. The weather numerical forecast also depends on the experience of professionals. Instead, various image processing techniques are used to make the results more objective and accurate. Cloud wind guide technology mainly refers to the process of retrieving the wind field by capturing the track track of the cloud cluster on the continuous time series satellite cloud image, which is an important source of information for the meteorological numerical forecast. Especially for the more remote and scarce meteorological monitoring sites. At present, the main method is template matching based on correlation calculation. However, the motion of cloud cluster belongs to the semi-fluid motion of non-rigid object. At present, there is not a relatively mature calculation model. When calculating the correlation degree of the template in the search area, we can get the cloud cluster displacement without fully considering the cloud cluster characteristics, which can not be well adapted to the whirlwind cloud rotation, and there is a large amount of calculation in the search mode. There is still a great dependence on labor, so this direction still has great space and exploration value. In this paper, in order to better capture the cloud motion law and improve the efficiency of cloud wind guide calculation, we consider the distribution of the feature points on the front and rear cloud images obtained by SIFT algorithm as the local feature information of the cloud cluster, and combine it with template matching. SIFT algorithm can effectively overcome the influence of scale change, rotation, brightness change and so on. Therefore, the feature points generated by SIFT algorithm can represent the cloud movement and describe the local features of the cloud cluster. In this paper, in order to avoid the interference caused by the uncertain motion of the cloud, the matching distance of the feature points is not directly selected as the moving vector, but the distribution of the feature points is taken as the local feature of the cloud cluster. Combining template matching with local feature, on the one hand, it can avoid the difficulty of detecting feature points caused by the existence of smooth region in cloud cluster, on the other hand, it can use local feature region to match directly. Effectively reduces the computational cost of traversing the search process when template matching is performed. The experimental results show that the region matching algorithm based on local features can adapt to all kinds of changes of cloud clusters, and can obtain some whirlwind rotation information based on the distribution of feature points, and can obtain more wind vector information than the traditional algorithm. Especially for high resolution satellite images, the computational efficiency can be greatly improved while ensuring certain accuracy.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P456.7;TP391.41

【参考文献】

相关期刊论文 前10条

1 万晓敏;田伟红;韩威;王瑞文;张其松;张晓虎;;FY-2E云导风的算法改进及其在GRAPES中的同化应用研究[J];气象;2017年01期

2 陈剑虹;韩小珍;;结合FAST-SURF和改进k-d树最近邻查找的图像配准[J];西安理工大学学报;2016年02期

3 董瑶海;;风云四号气象卫星及其应用展望[J];上海航天;2016年02期

4 胡逢超;;静观风雨 感知冷暖——“风云家族”的作为与贡献[J];太空探索;2015年02期

5 马侠霖;罗鹏;陈志斌;蔡铭;;基于尺度不变特征变换的云导风计算方法[J];气象科技;2014年03期

6 杨平吕;刘祥余;郭付才;彭新伟;黄思训;项杰;;云导风的初步探究[J];数学的实践与认识;2013年15期

7 邵寿平;韩春燕;谢勇;琚生根;;改进序贯相似性检测算法的遥感图像匹配[J];四川大学学报(自然科学版);2013年02期

8 赵世军;苏小勇;孙学金;刘磊;高太长;;地基红外云图云导风方法研究进展[J];大气与环境光学学报;2012年06期

9 朱志文;沈占锋;骆剑承;;改进SIFT点特征的并行遥感影像配准[J];遥感学报;2011年05期

10 ;叱咤风云的哼哈二将——“风云”系列气象卫星[J];太空探索;2006年10期

相关会议论文 前1条

1 王振会;张蕾;杨艳蓉;詹奕哲;张治国;;TCFM导风数据在台风分析中的应用个例研究[A];第27届中国气象学会年会雷达技术开发与应用分会场论文集[C];2010年

相关硕士学位论文 前2条

1 刘闵;中尺度对流系统中多个云团的跟踪和预测[D];南京理工大学;2013年

2 朱平;TCFM技术及其在云导风中的应用研究[D];南京信息工程大学;2007年



本文编号:1842628

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1842628.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8d50b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com