当前位置:主页 > 科技论文 > 软件论文 >

基于图像处理的温室黄瓜霜霉病诊断系统

发布时间:2018-05-04 13:18

  本文选题:温室黄瓜 + 霜霉病 ; 参考:《农业机械学报》2017年02期


【摘要】:为进一步提高温室黄瓜霜霉病诊断的准确率,构建了一个基于图像处理的温室黄瓜霜霉病诊断系统。针对温室黄瓜栽培现场采集的病害图像,采用基于条件随机场(Conditional random fields,CRF)的图像分割方法进行病斑图像分割,并采用决策树模型扩展一元势函数,提高病斑图像分割的准确性;将分割后的病斑图像转换到HSV颜色空间并提取其颜色、纹理和形状等25个特征,利用粗糙集方法进行特征选择与优化;构建了基于径向基核函数的SVM分类器,准确地识别与诊断温室黄瓜霜霉病。系统试验验证结果表明,该系统采用的病斑分割方法,能够克服复杂背景和光照条件的影响,准确地提取病斑图像;采用粗糙集方法能够有效地选择分类特征,将25个初始特征减少到12个,提高了运行效率;黄瓜霜霉病识别准确率达到90%,能够满足设施蔬菜叶部病害诊断的需求。
[Abstract]:In order to improve the accuracy of greenhouse cucumber downy mildew diagnosis, a greenhouse cucumber downy mildew diagnosis system based on image processing was constructed. Based on conditional random field CRF (conditional random field CRF), the disease image was segmented in greenhouse cucumber field, and the decision tree model was used to expand the univariate potential function to improve the accuracy of disease spot image segmentation. The segmented image is transformed into HSV color space and 25 features such as color, texture and shape are extracted, and feature selection and optimization are carried out using rough set method. A SVM classifier based on radial basis function (RBF) kernel function is constructed. Accurate identification and diagnosis of cucumber downy mildew in greenhouse. The experimental results show that the segmentation method can overcome the influence of complex background and illumination conditions and extract the disease spot image accurately, and the classification feature can be selected effectively by rough set method. The operation efficiency was improved by reducing 25 initial characteristics to 12, and the accuracy of cucumber downy mildew identification reached 90%, which could meet the requirement of vegetable leaf disease diagnosis.
【作者单位】: 中国农业大学信息与电气工程学院;食品质量与安全北京实验室;天津市农业科学院信息研究所;
【分类号】:S436.36;;TN941.1

【相似文献】

相关会议论文 前10条

1 苑廷刚;李爱东;李汀;艾康伟;严波涛;;图像处理技术在田径科研中的应用初探[A];第七届全国体育科学大会论文摘要汇编(二)[C];2004年

2 黄海永;朱浩;王朔中;;图像处理软件中宏结构的实现和扩展[A];面向21世纪的科技进步与社会经济发展(上册)[C];1999年

3 杨文杰;刘浩学;;基于马尔可夫场理论的图像处理新方法评述[A];面向21世纪的科技进步与社会经济发展(上册)[C];1999年

4 王晋疆;刘文耀;肖松山;陈晓东;孙正;;光电图像处理课程中教学环节的设计[A];光电技术与系统文选——中国光学学会光电技术专业委员会成立二十周年暨第十一届全国光电技术与系统学术会议论文集[C];2005年

5 王鹏;;图像处理技术与实验数据处理[A];全面建设小康社会:中国科技工作者的历史责任——中国科协2003年学术年会论文集(上)[C];2003年

6 王晓剑;曹婉;王莎莎;;一种基于高速DSP的图像处理应用平台[A];2008中国仪器仪表与测控技术进展大会论文集(Ⅲ)[C];2008年

7 张炜;蒋大林;郎芬玲;曹广鑫;王秀芬;;图像处理技术应用于选矿领域的综述[A];第九届全国信息获取与处理学术会议论文集Ⅱ[C];2011年

8 刘春桐;赵兵;张志利;仲启媛;;基于图像处理的自动瞄准系统精度研究[A];全国自动化新技术学术交流会会议论文集(一)[C];2005年

9 李向荣;;美式落袋球自动摆球系统的图像处理研究[A];2008中国仪器仪表与测控技术进展大会论文集(Ⅲ)[C];2008年

10 周荣官;周醒驭;;地质雷达图像处理在崩塌隐患探测中的应用及分析[A];第六届全国信号和智能信息处理与应用学术会议论文集[C];2012年

相关重要报纸文章 前10条

1 新疆大学纺织与服装学院 袁春燕;图像处理技术让数据更真实[N];中国纺织报;2013年

2 杨朝晖;我邻域图像处理达到每秒1350亿次超高速[N];科技日报;2008年

3 吴启海;图像处理时8位/通道或16位/通道模式的选择探讨[N];中国摄影报;2012年

4 殷幼芳;印前图像处理技术对印刷质量的影响[N];中国包装报;2005年

5 徐和德;图像处理要适度[N];中国摄影报;2006年

6 记者 申明;中星微发布场景高保真图像处理技术[N];科技日报;2010年

7 杨玉军;邮编图像处理技术通过验收[N];中国邮政报;2000年

8 董长生 吴志军;用图像处理软件推动刑侦信息技术工作[N];人民公安报;2003年

9 殷幼芳;艺术化的图像处理技术[N];中国包装报;2006年

10 ;富士图像处理方案走进手机[N];计算机世界;2002年

相关博士学位论文 前10条

1 罗军;图像处理快速算法研究与硬件化[D];武汉大学;2014年

2 孙传猛;煤岩图像处理及细观损伤本构模型研究[D];重庆大学;2015年

3 嵇晓平;基于各向异性扩散方程图像处理问题的研究[D];哈尔滨工业大学;2015年

4 黎海生;量子图像处理关键技术研究[D];电子科技大学;2014年

5 吴玉莲;非局部信息和TGV正则在图像处理中的应用研究[D];西安电子科技大学;2015年

6 张还;聚合物复合材料微观图像处理与分析[D];南京农业大学;2014年

7 季雷;光辐射对生物体影响的关键技术研究[D];南京航空航天大学;2015年

8 刘宇飞;基于模型修正与图像处理的多尺度结构损伤识别[D];清华大学;2015年

9 樊瑶;基于图像处理的路面裂缝检测关键技术研究[D];长安大学;2016年

10 程科;模糊形态学技术及其在图像处理中的应用[D];南京理工大学;2006年

相关硕士学位论文 前10条

1 董国龄;基于图像处理技术的水表自动检定及管理系统的设计[D];天津理工大学;2015年

2 李永晨;基于DSP的多路图像处理硬件系统研究[D];天津理工大学;2015年

3 杜高峰;基于opencv图像处理的列车受电弓动态特性监测方法研究[D];西南交通大学;2015年

4 王世豪;基于小波及压缩感知的图像处理方法及应用研究[D];燕山大学;2015年

5 牛蕾;基于非线性动力系统的图像处理[D];东北林业大学;2015年

6 宋君毅;基于图像处理的鱼群监测技术研究[D];天津理工大学;2015年

7 古伟楷;基于异构计算技术的视频与图像处理研究[D];华南理工大学;2015年

8 康睿;基于图像处理的砂土颗粒细观特性分析[D];宁夏大学;2015年

9 赵杰;柴油喷雾粒子图像处理及软件的设计[D];长安大学;2015年

10 石璐;基于图像处理的矿质混合料级配检测算法研究[D];长安大学;2015年



本文编号:1843111

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1843111.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ddbf6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com