当前位置:主页 > 科技论文 > 软件论文 >

基于深度学习理论的纹身图像检测研究

发布时间:2018-05-15 01:24

  本文选题:深度学习 + 深度置信网络 ; 参考:《南昌大学》2017年博士论文


【摘要】:随着图像拍摄设备、智能手机和互联网技术的发展,纹身图像的采集、传播变得越来越容易。伴随着突发事件的发展,纹身同其它生物特征一样,成为对罪犯嫌疑人识别的有力证据。如何对纹身图像进行检测和语义解读,并为相关部门和人员提供有力的证据,已引起安全部门的重视。纹身图像具有明显的图案信息的局部性、内容的复杂性、纹理的清晰性、颜色的单一性、图案Logo标志性、大小形状多样性等特点。这些特点使得纹身图像的检测与识别相对比较困难,同时也使得很难用单一的特征对其描述。深度学习通过逐层追叠形成多层的网络结构,这种结构可以从底层到高层逐层提取到图像的高层特征,从而有效对图像进行表示。这使得深度学习逐渐成为学术界、企业界研究的热点,同时也为纹身图像检测提供了一种新的途径。本文的主要工作是紧密围绕纹身图像的特点和现有的深度学习理论,展开深入的研究,提出针对纹身图像检测的若干改进算法。本文的主要工作和贡献包括以下几个方面:1.四种主要深度学习算法在纹身图像检测中的比较研究。通过分析纹身图像的特点,探讨哪种算法比较适用于纹身检测的研究工作。实验结果表明,在纹身检测方面,四种深度学习算法比传统的方法的性能更好,其中深度卷积神经网络和深度置信网络的性能更为突出。2.基于多特征融合的深度置信网络纹身图像检测改进算法(MF-DBN)。纹身图像的内容复杂性、纹理的清晰性、颜色的单一性等诸多特点决定了单一特征很难对其进行准确描述,同时像素又比较高。传统的DBN算法比较适中小尺寸的图像识别任务,针对这些问题,从多特征融合的视角,设计了一个基于纹身图像的多特征融合深度置信网络改进算法(MF-DBN),有效地解决了纹身图像高维性和单一特征描述不足的问题。在NIST纹身数据集上正确率达到96.89%,比NIST公布的最好正确率提高了0.59%。3.基于视觉词包的深度置信网络纹身图像检测改进算法(BOVW-DBN)。该算法不仅解决了输入高维性的问题,还针对纹身图案的局部性、大小不一性等特点,利用SIFT算法,建立中层词包语义模型,有效的实现对纹身图像的检测与识别。在NIST纹身数据集上正确率达到97.57%,比NIST公布的最好正确率提高了1.17%;在Flickr 10K上的正确率也达到79.27%。4.基于空间金字塔的深度置信网络纹身图像检测改进算法(SP-DBN)。该算法利用SPM模型,针对纹身图像的大小及空间分布等问题,解决了纹身图像的空间信息特征提取问题,实现纹身图像检测。实验结果显示,在NIST纹身数据集上正确率达到97.23%,比NIST公布的最好正确率提高了0.93%;在Flickr 10K上的正确率达到80.46%。5.基于三通道融合的卷积神经网络纹身图像检测改进算法(CFT-CNN)。针对全连接层在不同尺度下的特征抽取能力,首先根据纹身图像的检测问题设计了一个简单的单通道T-CNN模型;在单通道T-CNN模型的基础上,又设计出一个三通道连接层的卷积神经网络模型(CFT-CNN),并应用到纹身图像检测的任务中。同时针对纹身图像的特点做了相应的预处理。在NIST数据集上,CFT-CNN的正确率达到97.87%,比NIST公布的最好结果提高了1.57%,在Flickr 10K数据集上的正确率也达到85.61%。6.基于三通道融合的Faster R-CNN纹身图案检测改进算法(CFT Faster RCNN)。该算法针对纹身图像大小、尺度变化大等问题,在Faster R-CNN的基础上,充分考虑到全连接层在不同尺度下的特征提取能力,在ROI池化后增加一个三通道的全连接层,解决了纹身图像位置识别困难的问题。实验结果表明,在NIST数据集上,本算法比Faster R-CNN算法在MAP上提同了3.35%,在IOU上提高了4.59%。最后,对基于DBN和CNN的纹身图像检测改进算法进行了对比研究。结果表明改进算法在NIST上性能有所提升,其中改进的CNN算法的效果更好。在改进的DBN方法中,由于词包模型是在SIFT特征基础上对纹身图像进行表示,在小数据集上更好。SP-DBN算法由于考虑到空间信息,对大一些的数据集的效果相对较好。从NIST和Flickr两个数据集的实验结果来看,NIST数据集存在一定局限性,Flickr数据集更接近现实环境。
[Abstract]:With the development of image photographing equipment, smart phone and Internet technology, the collection of tattoo images has become more and more easy. With the development of unexpected events, the tattoo, like other biological features, has become a powerful evidence for the identification of criminal suspects. How to detect and interpret tattoo images and to be related departments and people The staff provide strong evidence, which has aroused the attention of the security department. The tattoo image has the features of obvious pattern information, the complexity of the content, the clarity of the texture, the singleness of the color, the Logo logo of the pattern, the diversity of the size and shape, which make the detection and recognition of the tattoo image relatively difficult and also make it possible It is difficult to describe it with a single feature. Deep learning forms a multilayer network structure by overlapping layer by layer. This structure can be extracted from the bottom to the high level to the high level feature of the image, thus effectively expressing the image. This makes the deep learning gradually become a hot topic in the academic circle, and also for the tattoo image inspection. The main work of this paper is to focus on the characteristics of the tattoo image and the existing depth learning theory, and to carry out an in-depth study and propose some improved algorithms for the tattoo image detection. The main work and contributions of this paper include the following aspects: 1. the four main depth learning algorithms are in tattoo image detection. By analyzing the characteristics of the tattoo image, this paper discusses which algorithm is suitable for the research of tattoo detection. The experimental results show that, in the aspect of tattoo detection, the performance of the four depth learning algorithms is better than the traditional method, and the performance of the deep convolution neural network and the depth confidence network is more prominent based on the.2. based on the tattoo detection. The improved algorithm for multi feature fusion of deep confidence network tattoo image detection (MF-DBN). The complexity of the content of the tattoo image, the clarity of the texture, the singleness of the color, and so on, determine that the single feature is difficult to accurately describe it, and the pixels are relatively high. The traditional DBN algorithm compares the image recognition task with the small size and size. To these problems, from the perspective of multi feature fusion, a multi feature fusion depth confidence network improvement algorithm (MF-DBN) based on the tattoo image is designed, which effectively solves the problem of the lack of high dimension and single feature description of tattoo images. The accuracy of the NIST tattoo data set is 96.89%, which is 0. higher than the best correct rate published by NIST. 59%.3. based on the visual word packet, the improved algorithm (BOVW-DBN) of the depth confidence network tattoo image detection (BOVW-DBN). This algorithm not only solves the problem of high dimension of input, but also aims at the features of the locality and size of the tattoo pattern, and uses the SIFT algorithm to establish the middle word packet semantic model, effectively realizing the detection and recognition of the tattoo image. In NIST The correct rate of the tattoo data set is 97.57%, which is 1.17% better than the best correct rate published by NIST; the correct rate on the Flickr 10K also reaches 79.27%.4. based on the improved algorithm of the depth confidence network tattoo image detection based on space Pyramid (SP-DBN). The algorithm uses the SPM model to solve the problem of the size and spatial distribution of the tattoo image. The experimental results show that the correct rate of the NIST tattoo data set is 97.23%, which is 0.93% better than the best correct rate published by NIST; the correct rate on the Flickr 10K has reached the improved algorithm of the convolution neural network image detection based on the three channel fusion of 80.46%.5.. CFT-CNN). In view of the feature extraction ability of all connected layers at different scales, a simple single channel T-CNN model is designed according to the detection of tattoo image. On the basis of single channel T-CNN model, a convolution neural network model (CFT-CNN) for three channel connection layer is designed, and the task is applied to the task of tattoo image detection. In the NIST data set, the correct rate of CFT-CNN is 97.87%, which is 1.57% higher than the best result published by NIST, and the correct rate on the Flickr 10K data set also reaches the 85.61%.6. based Faster R-CNN tattoo pattern detection improvement algorithm based on the three channel fusion (CFT Faster RCNN). In view of the size of the tattoo image and the large scale change, on the basis of Faster R-CNN, we fully consider the feature extraction ability of the full connection layer at different scales, and add a three channel full connection layer after the ROI pool, which solves the problem of the difficult position recognition of the tattoo image. The experimental results show that this calculation is based on the NIST data set. The method is compared with the Faster R-CNN algorithm on MAP, which is 3.35%, the 4.59%. is improved on IOU, and the improved algorithm based on DBN and CNN is compared. The results show that the improved algorithm improves the performance on NIST, and the improved CNN algorithm has better effect. In the improved DBN method, the word packet model is in SIFT. On the basis of features, the image of tattoo is expressed. On the small data set, the better.SP-DBN algorithm has a better effect on the larger data sets because of the consideration of spatial information. From the experimental results of two data sets of NIST and Flickr, the NIST dataset has some limitations, and the Flickr data set is closer to the real environment.

【学位授予单位】:南昌大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TP391.41

【相似文献】

相关期刊论文 前10条

1 曹玉东;;基于融合特征的近似图像检测方法[J];计算机技术与发展;2012年08期

2 敖琪;痕迹图像检测系统的研制与应用[J];警察技术;2001年04期

3 焦圣喜;韩立强;岳晓峰;贾瑞庆;;一种智能图像检测的方法[J];制造业自动化;2006年12期

4 吴春亚;刘献礼;王玉景;王鹏;刘军;赵彦玲;;机械加工表面粗糙度的图像检测方法[J];哈尔滨理工大学学报;2007年03期

5 颜红金;张永林;;医用眼睛图像检测系统的构建[J];计算机工程与设计;2010年24期

6 高波;张晓桂;王瑜;;一种折页错位的图像检测方法的探讨[J];中国印刷与包装研究;2010年S1期

7 姚彩虹;蔡乐才;祝志威;;嵌入式图像检测的一种解决方案及应用前景[J];四川理工学院学报(自然科学版);2012年01期

8 张海伟;纪玉波;;人脸图像检测与正规化的研究[J];电子设计工程;2012年20期

9 姚金良;罗兰;;近似拷贝图像检测综述[J];杭州电子科技大学学报;2013年04期

10 张正华;余松煜;乔艳涛;方志军;;一种新颖的抗失真的图像检测算法[J];计算机应用与软件;2007年04期

相关会议论文 前5条

1 刘铁根;邓集杰;朱均超;李晋申;江俊峰;;嵌入式图像检测一体机研究[A];2006年全国光电技术学术交流会会议文集(D 光电信息处理技术专题)[C];2006年

2 梁振新;张建勋;邹林;裴怡;;焊接操作模拟中焊条位置图像检测方法[A];第十一次全国焊接会议论文集(第2册)[C];2005年

3 刘铁根;朱均超;邓集杰;王双;杨永;;基于高速DSP嵌入式图像检测系统研究[A];中国光学学会2006年学术大会论文摘要集[C];2006年

4 郑嵘;方志宏;夏勇;;板坯纵向裂纹的图像检测方法[A];中国计量协会冶金分会2012年会暨能源计量与节能降耗经验交流会论文集[C];2012年

5 颜建强;高新波;田春娜;李英;李亮;;多媒体信息服务中色情图像检测算法[A];第十五届全国图象图形学学术会议论文集[C];2010年

相关博士学位论文 前5条

1 许庆勇;基于深度学习理论的纹身图像检测研究[D];南昌大学;2017年

2 蔡波;桥梁形变的图像检测关键技术研究[D];中国工程物理研究院;2016年

3 李力行;基于图像检测的空间激光通信链路误差校正技术研究[D];中国科学院光电技术研究所;2017年

4 乔闹生;PCB自动光学检测的图像检测与处理关键技术研究[D];电子科技大学;2010年

5 刘思远;基于高维视觉特征模型的目标图像检测与图像分割技术研究[D];电子科技大学;2006年

相关硕士学位论文 前10条

1 吴维起;基于FPGA的高分辨率线阵CCD图像检测系统的设计与实现[D];国防科学技术大学;2014年

2 吴坤;近似拷贝图像检测[D];中国计量学院;2015年

3 胡越浪;基于神经网络的水稻纹枯病图像检测[D];四川农业大学;2014年

4 孙珂琪;图像检测中圆锥螺纹牙型轮廓重构研究[D];太原科技大学;2015年

5 王勋爵;基于图像检测的自校准水平仪设计与实现[D];东南大学;2015年

6 马登辉;出租车视频监控的异常图像检测与乘客识别研究[D];长安大学;2016年

7 胡帮义;基于数字图像检测和虚拟现实的桥梁施工控制技术研究[D];广州大学;2016年

8 赵龙飞;微光图像检测方法的研究[D];天津大学;2014年

9 杨凯;基于局部图像特征的图像检测方法研究及应用[D];山东中医药大学;2016年

10 李先斌;近似重复图像检测及其应用[D];中国科学技术大学;2010年



本文编号:1890357

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1890357.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1b3ab***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com