基于混合特征的互联网茄子图像检索方法与系统
本文选题:图像检索 + 特征提取 ; 参考:《农业工程学报》2017年S1期
【摘要】:互联网图像数据的爆炸式增长使得有效检索变得越来越重要,不同于文字的检索,有效的图像检索仍然是一个开放的问题。该文提出了基于混合特征的互联网茄子类图像的检索方法,并开发了图像检索系统。该文采用Hu不变矩(hu invariant distance)作为几何不变特征,采用颜色矩方法,通过计算HSV空间的三阶矩来描述颜色特征,采用分水岭算法(watershed algorithm)提取茄子的轮廓特征,通过长宽比特征区分长茄和圆茄,最后综合几何不变特征、颜色、轮廓特征进行茄子对象的描述,分别给3种特征赋不同的权重,形成检索系统。试验验证,该文方法和系统在测试数据集上查全率为87.6%,查准率为87.6%,相比于只采用Hu不变矩方法(其查全率为31.75%,查准率为31.75%)在Hu不变矩加颜色特征方法(查全率为52.8%,查准率为52.8%),有了一定的提升,验证了方法的有效性。
[Abstract]:The explosive growth of Internet image data makes effective retrieval more and more important. Different from text retrieval, effective image retrieval is still an open problem. In this paper, a hybrid feature based image retrieval method for eggplant is proposed, and an image retrieval system is developed. In this paper, Hu invariant is used as geometric invariant feature, color moment method is used to describe the color feature by calculating the third-order moments in HSVspace, and watershed algorithm is used to extract the outline feature of eggplant. The length to width ratio feature is used to distinguish the long and round eggplant. Finally, the geometric invariant feature, the color feature and the contour feature are integrated to describe the eggplant object. The three features are given different weights to form a retrieval system. Test verification, In this paper, the recall rate on the test data set is 87.6, and the precision is 87.6. Compared with the Hu invariant moment method (its recall rate is 31.75 and precision is 31.75), the Hu invariant moment plus color feature method (the recall rate is 52.8, the precision is the same as the Hu invariant moment method). 52.8%, there has been a certain promotion, The validity of the method is verified.
【作者单位】: 中国农业大学信息与电气工程学院;北京市农业物联网工程技术研究中心;农业部农业信息获取技术重点实验室;鲁东大学信息与电气工程学院;
【基金】:国家自然科学基金(61472172,61100115) 国家国际科技合作专项项目(2015DFA00530)
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 韩法旺;;基于云计算模式的图像检索研究[J];情报科学;2011年10期
2 何岩;;以计算机为基础的色彩图像检索方法与研究[J];计算机光盘软件与应用;2013年12期
3 郭海凤;李广水;仇彬任;;基于融合多特征的社会网上图像检索方法[J];计算机与现代化;2013年12期
4 柏正尧,周纪勤;基于复数矩不变性的图像检索方法研究[J];计算机应用;2000年10期
5 夏峰,张文龙;一种图像检索的新方法[J];计算机应用研究;2002年11期
6 邓诚强,冯刚;基于内容的多特征综合图像检索[J];计算机应用;2003年07期
7 斯白露,高文,卢汉清,曾炜,段立娟;基于感兴趣区域的图像检索方法[J];高技术通讯;2003年05期
8 刘怡,于沛;基于“知网”的新闻图像检索方法[J];河南师范大学学报(自然科学版);2003年02期
9 张荣,郑浩然,李金龙,王煦法;进化加速技术在图像检索中的应用[J];计算机工程与应用;2004年16期
10 黄德才,胡嘉,郑月锋;交互式图像检索中相关反馈进展研究[J];计算机应用研究;2005年09期
相关会议论文 前10条
1 陈旭文;朱红丽;;一种高效的图像检索方法[A];中国仪器仪表学会第九届青年学术会议论文集[C];2007年
2 周向东;张亮;张琪;刘莉;殷慷;施伯乐;;一种新的图像检索相关反馈方法[A];第十九届全国数据库学术会议论文集(研究报告篇)[C];2002年
3 陈世亮;李战怀;闫剑锋;;一种基于本体描述的空间语义图像检索方法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年
4 赵海英;彭宏;;基于最优近似反馈的图像检索[A];’2004系统仿真技术及其应用学术交流会论文集[C];2004年
5 许相莉;张利彪;于哲舟;周春光;;基于商空间粒度计算的图像检索[A];第八届全国信息隐藏与多媒体安全学术大会湖南省计算机学会第十一届学术年会论文集[C];2009年
6 李凌伟;周荣贵;刘怡;;基于概念的图像检索方法[A];第十九届全国数据库学术会议论文集(技术报告篇)[C];2002年
7 杨关良;李忠杰;徐小杰;;基于代表色的图像检索方法研究[A];首届信息获取与处理学术会议论文集[C];2003年
8 彭瑜;乔奇峰;魏昆娟;;基于多示例学习的图像检索方法[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年
9 胡敬;武港山;;基于语义特征的风景图像检索[A];2009年研究生学术交流会通信与信息技术论文集[C];2009年
10 许天兵;;一种基于语义分类的图像检索方法[A];中国图象图形学会第十届全国图像图形学术会议(CIG’2001)和第一届全国虚拟现实技术研讨会(CVR’2001)论文集[C];2001年
相关博士学位论文 前10条
1 崔超然;图像检索中自动标注、标签处理和重排序问题的研究[D];山东大学;2015年
2 杨迪;基于内容的分布式图像检索[D];北京邮电大学;2015年
3 张旭;网络图像检索关键技术研究[D];西安电子科技大学;2014年
4 吴梦麟;基于半监督学习的医学图像检索研究[D];南京理工大学;2015年
5 汪友宝;基于多分辨率和显著特征的图像检索方法研究[D];上海大学;2015年
6 张运超;面向海量图像检索的视觉编码方法分析与优化[D];北京理工大学;2015年
7 高毫林;基于哈希技术的图像检索研究[D];解放军信息工程大学;2014年
8 李清亮;图像检索中判别性增强研究[D];吉林大学;2016年
9 刘爽;多特征融合图像检索方法及其应用研究[D];哈尔滨理工大学;2016年
10 程航;密文JPEG图像检索研究[D];上海大学;2016年
相关硕士学位论文 前10条
1 赵鸿;基于尺度不变局部特征的图像检索研究[D];华南理工大学;2015年
2 孙剑飞;基于图像索引的热点话题检索方法研究[D];兰州大学;2015年
3 章进洲;图像检索中的用户意图分析[D];南京理工大学;2015年
4 苗思杨;移动图像检索中的渐进式传输方式研究[D];大连海事大学;2015年
5 都业刚;基于显著性的移动图像检索[D];大连海事大学;2015年
6 王梦蕾;基于用户反馈和改进词袋模型的图像检索[D];南京理工大学;2015年
7 许鹏飞;基于草图的海量图像检索方法研究[D];浙江大学;2015年
8 冯进丽;基于BoF的图像检索与行为识别研究[D];山西大学;2015年
9 乔维强;基于低级特征和语义特征的医学图像检索[D];北京理工大学;2015年
10 蒋国宝;基于内容的概念建模和图像检索重排序[D];复旦大学;2014年
,本文编号:2002984
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2002984.html