面向即时众包协作的移动垂直应用的设计与实现
[Abstract]:Crowdsourcing, as a new mode of social production, can greatly integrate social resources and create huge commercial value. With the development of Internet technology, crowdsourcing is no longer a simple enterprise behavior, but a socialized behavior of national cooperation. The rise of mobile Internet provides opportunities for the mobility and fragmentation of crowdsourcing collaboration, but at the same time challenges. The existing crowdsourcing collaboration applications present information directly after classification, which not only results in information overload, but also is difficult to quickly respond to users' real-time collaboration tasks in mobile scenarios. Based on the practical requirements, this paper introduces a recommendation system to solve the problems faced by collaborative applications in mobile scenarios. The primary goal of this application design is to design a recommendation engine architecture that supports complex machine learning algorithms and can respond to user requests in real time. By using distributed message system (Kafka) combined with the latest distributed parallel computing framework (Spark), high-performance memory database (Redis) and distributed NoSQL database (HBase), this paper designs and implements a three-segment hybrid recommendation engine named "On-Line, Near-Off-Line". The offline part updates the recommendation model by batch calculation, the near-line part incrementally calculates the asynchronous push recommendation results, and the online part filters and sorts the single task in response to the user's real-time request. The feasibility and rationality of the technical scheme are verified by experiments. Most of the existing collaborative activity recommendation algorithms are direct migration of traditional algorithms and do not fully consider the characteristics of collaborative activities in mobile scenarios. Mobile scene provides new information such as user location, user social relationship and so on. The crowdsourcing collaboration between users constitutes an event-based social network (EBSN). In this paper, the semantic features, location features and social impact of EBSN are analyzed, and the influence of integrating the above factors on the users' participation in collaborative activities is analyzed. A singular matrix decomposition algorithm based on neighborhood implicit factor is proposed. The experimental results show that compared with the traditional prediction model, the proposed model can effectively alleviate the cold start problem, can more accurately predict whether users will participate in the activities, and then recommend collaborative activities for users. Based on the above recommendation system architecture and recommendation algorithm, a mobile application is designed and implemented. The application can intelligently sort and recommend the order based on the user's interest and real-time context information, and can respond to the user's real-time cooperation demand, and effectively solve the problem of information overload in the mobile scene.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 赵景明;时永梅;;图书馆众包模式的理论与实践研究[J];图书馆理论与实践;2011年08期
2 王晨郁;;一次“众包”新闻实践带来的思考[J];中国记者;2012年07期
3 东方;;众包在国外图书馆中的应用及有益启示[J];新世纪图书馆;2012年12期
4 邓珊妮;陶景霞;;众包在国外图书馆中的应用及启示[J];湖南社会科学;2013年01期
5 吴金红;陈强;张玉峰;;基于众包的企业竞争情报工作模式创新研究[J];情报理论与实践;2014年01期
6 陆丹;;互联网时代下众包风险的识别与规避[J];物流工程与管理;2013年04期
7 宋爱娴;;互联网电子商务众包模式在政府中的创新应用研究[J];电脑知识与技术;2013年05期
8 吴yP昕;王子谨;;基于众包的移动互联信息传播设计研究[J];现代传播(中国传媒大学学报);2013年10期
9 范丽娟;;众包对图书馆的影响及其运用[J];图书馆建设;2011年01期
10 张志强;逄居升;谢晓芹;周永;;众包质量控制策略及评估算法研究[J];计算机学报;2013年08期
相关会议论文 前10条
1 钟耕深;朱雅杰;;基于众包的商业模式优化[A];第五届(2010)中国管理学年会——组织与战略分会场论文集[C];2010年
2 王韬丞;罗喜军;杜小勇;;基于层次的推荐:一种新的个性化推荐算法[A];第二十四届中国数据库学术会议论文集(技术报告篇)[C];2007年
3 唐灿;;基于模糊用户心理模式的个性化推荐算法[A];2008年计算机应用技术交流会论文集[C];2008年
4 任延静;林丽慧;;众包平台创新竞赛中加价延期机制采纳决策的研究[A];第八届(2013)中国管理学年会——信息管理分会场论文集[C];2013年
5 秦国;杜小勇;;基于用户层次信息的协同推荐算法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年
6 周玉妮;郑会颂;;基于浏览路径选择的蚁群推荐算法:用于移动商务个性化推荐系统[A];社会经济发展转型与系统工程——中国系统工程学会第17届学术年会论文集[C];2012年
7 苏日启;胡皓;汪秉宏;;基于网络的含时推荐算法[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年
8 梁莘q,
本文编号:2151590
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2151590.html