基于颜色和SIFT特征的图像检索技术及其分布式实现
[Abstract]:Image retrieval has become one of the important means to obtain information. How to quickly and accurately obtain the required content from massive images has become the main bottleneck in the development of image retrieval. Therefore, this paper mainly studies how to select image features, design retrieval algorithm, build image retrieval system and improve system performance. The work of this paper can be divided into three parts: image feature analysis, retrieval algorithm design and parallel implementation based on Hadoop platform. In this paper, an image retrieval algorithm based on color correlation graph and SIFT feature is designed and implemented. On this basis, SIFT feature extraction and matching are limited to a certain range by using DBSCAN clustering algorithm. A content-based image retrieval system is constructed with the help of Hadoop big data processing framework. This paper firstly combs the development and achievement of image retrieval technology, discusses the image retrieval technology based on text, content and high-level semantics, and analyzes their advantages and disadvantages and applicable scenarios. Secondly, in order to improve the accuracy of retrieval, this paper selects the fusion of color autocorrelation and SIFT features. On this basis, we use the density-based DBSCAN clustering algorithm to cluster the 64-dimensional color features, and find the cluster closest to the sample image. Then the SIFT features are extracted and matched in this cluster to reduce the time complexity of the algorithm. Considering that when the Euclidean distance between the feature points of two images is relatively large, the traditional similarity measurement method based on the matching ratio of SIFT feature points will lose some spatial information. In this paper, the average Euclidean distance of SIFT feature matching points is used as the basis of similarity measurement. Finally, this paper realizes the synthesis feature extraction and matching based on MapReduce, and makes use of the idea of finding the adaptive neighborhood radius and the minimum number of neighborhood points in the AGD-DBSCAN algorithm to realize the MapReduce of the DBSCAN clustering process. In this paper, the recall rate, recall rate and system speedup, efficiency and expansion rate of the algorithm under Hadoop framework are evaluated, and the availability and extensibility of the algorithm are verified.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 郑启财;曾智勇;池燕玲;;改进的基于颜色和SIFT特征的图像检索方法[J];计算机系统应用;2015年11期
2 陈勇平;郭文静;王正;;基于颜色直方图的木材单板图像检索技术研究[J];南京林业大学学报(自然科学版);2015年05期
3 郭树旭;赵静;李雪妍;;基于中心-轮廓距离特征统计的形状表示方法[J];电子与信息学报;2015年06期
4 孙延维;雷建军;苏丹;;综合颜色块的直方图图像检索算法[J];华中师范大学学报(自然科学版);2015年02期
5 张永库;李云峰;孙劲光;;基于改进颜色聚合向量与贡献度聚类的图像检索算法[J];计算机科学;2015年02期
6 谢莉;成运;曾接贤;余胜;;基于颜色和梯度方向共生直方图的图像检索[J];计算机工程与应用;2016年10期
7 张永库;李云峰;孙劲光;;综合颜色和形状特征聚类的图像检索[J];计算机应用;2014年12期
8 顾晓东;杨诚;;新的颜色相似度衡量方法在图像检索中的应用[J];仪器仪表学报;2014年10期
9 沈新宁;王小龙;杜建洪;;基于颜色自相关图和互信息的图像检索算法[J];计算机工程;2014年02期
10 董傲霜;宋宏亮;;基于SIFT特征和颜色融合的图像检索方法[J];吉林大学学报(工学版);2013年S1期
相关硕士学位论文 前2条
1 姜文;基于Hadoop平台的数据分析和应用[D];北京邮电大学;2011年
2 王炬;多媒体信息检索客户端系统的设计和实现[D];中国科学院研究生院(计算技术研究所);1998年
,本文编号:2155898
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2155898.html