基于用户行为的情感分析技术的研究
[Abstract]:With the application of web2.0 and the rapid popularization of mobile network and mobile terminal, social network has become an important part of people's daily life. The rise of social networks brings opportunities for emotional analysis. The emotional analysis of social networks is helpful for service providers to optimize services, accurate marketing; help users to improve their experience, efficient consumption; help government regulators to monitor and guide public opinion, and so on. At present, many scholars begin with the processing and analysis of short texts, or use emotional dictionaries or extract semantic features for emotional analysis. In the exploration and study of human behavior, it can be found that behavior and emotion affect each other and reflect each other. Therefore, this paper is different from the approach from the perspective of text semantics, from the point of view of the behavior of network users to explore and analyze the relationship between user behavior and their emotional tendencies and laws. And construct the classifier of emotion tendency based on user behavior. In the social network, the user scale is huge, but its behavior is normative, easy to divide and obtain, which provides convenience for the study of network user behavior. Taking Sina Weibo as an example, this paper studies the influence and function of user behavior in the affective analysis of social network from the characteristics of user behavior. Firstly, the current research status of emotional analysis and user behavior is studied, and the theoretical basis and research situation of social network are systematically introduced. Then, according to the general process of feature-based affective analysis, data capture, preprocessing and affective tagging are carried out in the data preparation stage, and in the feature extraction stage, the user behavior features are extracted. Through statistical analysis and association rule mining, the relationship between user's behavior and emotional tendency is studied. Finally, the classification technology and Bayesian and decision tree classifier are studied deeply and systematically. Combined with the actual situation, the naive Bayesian algorithm and C4.5 algorithm are used to construct the emotion classification model based on user behavior characteristics. It is verified by experiments. Through a series of studies and experiments, this paper proves that there is a certain relationship and law between the user's behavior and their emotional tendency in social network, thus laying a foundation for further research.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.1
【参考文献】
相关期刊论文 前10条
1 杨善林;王佳佳;代宝;李旭军;姜元春;刘业政;;在线社交网络用户行为研究现状与展望[J];中国科学院院刊;2015年02期
2 阳爱民;周咏梅;周剑峰;;中文微博语料情感类别自动标注方法[J];计算机应用;2014年08期
3 赖清楠;马皓;宋维佳;李婷婷;蒋广学;张蓓;;高校BBS与微博的用户社交行为特征分析[J];通信学报;2013年S2期
4 何跃;王迪;张丽丽;;基于关联规则的微博主题搜索策略研究[J];情报杂志;2013年06期
5 周胜臣;瞿文婷;石英子;施询之;孙韵辰;;中文微博情感分析研究综述[J];计算机应用与软件;2013年03期
6 谢丽星;周明;孙茂松;;基于层次结构的多策略中文微博情感分析和特征抽取[J];中文信息学报;2012年01期
7 何黎;何跃;霍叶青;;微博用户特征分析和核心用户挖掘[J];情报理论与实践;2011年11期
8 杨成明;;微博客用户行为特征实证分析[J];图书情报工作;2011年12期
9 赵妍妍;秦兵;刘挺;;文本情感分析[J];软件学报;2010年08期
10 王晓光;;微博客用户行为特征与关系特征实证分析——以“新浪微博”为例[J];图书情报工作;2010年14期
相关会议论文 前1条
1 姚天f ;彭思崴;;汉语主客观文本分类方法的研究[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年
相关博士学位论文 前2条
1 肖云鹏;在线社会网络用户行为模型与应用算法研究[D];北京邮电大学;2013年
2 易兰丽;基于人类动力学的微博用户行为统计特征分析与建模研究[D];北京邮电大学;2012年
相关硕士学位论文 前2条
1 高岩;微博情感分析的相关技术研究[D];华北电力大学;2014年
2 杨琳;基于社交网络的用户行为分析及预测[D];西安邮电大学;2013年
,本文编号:2159188
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2159188.html