基于GPU的数字全息自动聚焦技术研究
[Abstract]:Digital holography has many advantages, such as fast, contactless, full-field, three-dimensional real-time measurement and so on. It is widely used in micro-device detection, particle field analysis, biological microscopic observation, optical device detection and so on. Although digital holography can reproduce the object to be measured by computer, in order to obtain the best image quality, the best reconstruction distance must be obtained by autofocus technique. For digital holographic auto-focusing, two indexes should be considered: one is whether the best reappearance distance can be found accurately, and the other is whether the focus can be completed quickly. On the basis of studying the recording and reproducing of holograms, focusing evaluation function and focusing search algorithm, a focus evaluation function based on db4 wavelet basis is improved. At the same time, the best reappearance distance is judged accurately, and the strong noise resistance is obtained, and then the optimization and acceleration of the autofocus algorithm is realized by using the high performance parallel and fast computing characteristics of GPU. The main contents of this paper are as follows: firstly, on the basis of analyzing the principle of digital hologram recording and reproducing, the comparison and analysis of two kinds of digital holographic recording structures and three reproducing algorithms are made. The structure and algorithm of off-axis holographic optical path structure and Fresnel transform method are determined, and the commonly used grayscale variance method and gradient leveling method are described in detail. Secondly, on the basis of analyzing the two key technologies of focusing evaluation function and focusing search algorithm, the advantages of wavelet transform in image time-frequency localization analysis are analyzed. A focus evaluation function based on wavelet transform is proposed, and compared with other traditional focus evaluation functions, its performance is proved to be superior, and the best reconstruction distance of hologram can be found accurately. On the basis of three common search algorithms, the traversal search method, Fibonacci search method and the "blind" mountain climbing search method, the advantages and disadvantages of these algorithms are analyzed, and the applicable range is given. Finally, the autofocus algorithm is transplanted to GPU, and the algorithm is accelerated by the powerful parallel computing power of GPU. Compared with running on CPU, the speed of autofocus algorithm is increased by more than 10 times, and the goal of fast focusing is achieved. A digital holographic auto-focusing application software is developed based on the autofocus program prototype of GPU. The software interface is easy to understand and easy to use.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41;O438.1
【参考文献】
相关期刊论文 前10条
1 闫钧华;杭谊青;许俊峰;储林臻;;基于CUDA的高分辨率数字视频图像配准快速实现[J];仪器仪表学报;2014年02期
2 蔡勇;李光耀;王琥;;基于CUDA的并行粒子群优化算法的设计与实现[J];计算机应用研究;2013年08期
3 吴春生;冯才刚;迟学斌;;GPU指纹计算程序简述及性能分析[J];科研信息化技术与应用;2012年04期
4 许雪贵;张清;;基于CUDA的高效并行遥感影像处理[J];地理空间信息;2011年06期
5 周侃;阎文丽;甘斌;郝佳新;;基于GPU的小波变换[J];计算机仿真;2010年08期
6 刘向远;梅忠义;张穗萌;;“0.618”法、Fibonacci法、抛物线法搜寻复摆周期极值点[J];物理实验;2010年03期
7 甘新标;沈立;王志英;;基于CUDA的并行全搜索运动估计算法[J];计算机辅助设计与图形学学报;2010年03期
8 刘长庚;王大勇;张亦卓;赵洁;万玉红;江竹青;;数字全息成像中基于导数的自动对焦算法[J];中国激光;2009年11期
9 杜勇;蒋征;;基于小波分解的动态变形预报[J];地理空间信息;2009年02期
10 冯忠耀;贾f ;周景会;忽满利;;数字全息中利用图像拼接测量大物体的三维形貌[J];中国激光;2008年12期
相关博士学位论文 前4条
1 闵俊伟;相移数字全息显微的理论与实验研究[D];中国科学院研究生院(西安光学精密机械研究所);2013年
2 王健;基于图像处理的自动调焦技术研究[D];中国科学院研究生院(光电技术研究所);2013年
3 张亦卓;生物样品的数字全息显微相衬成像技术研究[D];北京工业大学;2012年
4 陈国金;数字图像自动聚焦技术研究及系统实现[D];西安电子科技大学;2007年
相关硕士学位论文 前10条
1 郭志鹏;肿瘤基因表达谱的数据挖掘与识别分类[D];北京理工大学;2015年
2 张广;高清网络摄像机的自动聚焦技术研究[D];郑州大学;2014年
3 赵馨怡;基于CUDA的图像滤波技术研究[D];西北师范大学;2014年
4 张晖;遥感图像区域变化检测技术的研究[D];北京交通大学;2014年
5 常恒;基于动态拉力和倾角的输电线路覆冰预测与试验研究[D];重庆大学;2013年
6 马书晓;基于提升小波变换的自动聚焦算法研究[D];山东大学;2013年
7 唐晓迪;基于半色调图像印刷水印的稳健性和脆弱性研究[D];吉林大学;2011年
8 杨丹丹;图像压缩中小波变换的GPU高速优化方法研究[D];西安电子科技大学;2011年
9 殷玉娟;微结构表面形貌测量的数字全息显微方法的研究[D];天津大学;2010年
10 张岩;基于小波变换的图像压缩编码研究[D];青岛科技大学;2009年
,本文编号:2159210
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2159210.html