基于KRTS的实时视觉处理系统与模板匹配算法研究
[Abstract]:With the rising labor cost, and with the advance of industry 4.0 and the strategy of 2025 made in China, with intelligent manufacturing as the core, Domestic manufacturing enterprises are actively developing or purchasing corresponding automation equipment to automate existing production lines in order to improve production efficiency, reduce labor costs and solve the growing shortage of manufacturing labor. Machine vision is the eye of automation equipment, through machine vision can further improve the level of automation, so machine vision has been more and more widely used in the automation industry in recent years, machine vision has a bright future. But at the same time, more and more requirements for real-time image processing are put forward. Based on the analysis of the present situation and development trend of machine vision and its control system at home and abroad, A real time vision processing system is constructed with KRTS, a real time extension suite of Windows operating system developed by Kithara Company of Germany. The real time performance of this vision processing system is verified by experiments. After comparing the advantages and disadvantages of common communication methods such as serial port USB and Ethernet, this paper finally chooses Ethernet communication with excellent comprehensive performance. The Ethernet communication between the visual processing system and the motion control system is realized by using the API function provided by Socket to implement the TCP/IP protocol. On the basis of fully understanding the internal running mechanism of TCP/IP protocol implemented by Socket and the distribution of all variables, arrays, structures and so on in the computer memory in the project, In this paper, it is proposed that the data needed to be transmitted between the visual processing system and the motion control system can be classified according to function and encapsulated into one structure, and together with the other variables that need to be transmitted, it is constructed in a large structure with socket and straight again. Then the structure object is used to realize the data transmission between the visual processing system and the motion control system. The process of data serialization and deserialization is eliminated, which not only improves the efficiency of data communication, but also simplifies the data transfer protocol. In this paper, the traditional template matching algorithm based on circular projection is improved, by extracting the ROI image of the workpiece to remove the interference of the outside pixels of the workpiece to the identification of the workpiece, and by modifying the principle of making the circular template to improve the utilization rate of the workpiece information. Particle swarm optimization (PSO) is used to improve the rotation speed of the workpiece, and the ROI image of the overlapped workpiece is extracted by using the matching information of the external contour of the workpiece to be tested and the template workpiece. The compensation mechanism of ROI image is provided for the workpiece which is not fully in view, so as to identify the parts, and make the matching result of template more reliable. Finally, this paper implements and verifies the template matching algorithm with OpenCV function, and transplants it to the real-time visual processing system constructed in this paper.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 陈瑞红;对用来显示眼睛图像的三个模板匹配算法的评估[J];国外医学.生物医学工程分册;1993年05期
2 马云龙,夏炯贤,吴永明;基于模板匹配算法高速运动分析系统设计与实现[J];计算机应用与软件;2004年07期
3 余立功,王强,陈纯;多尺度模板匹配算法[J];工程图学学报;2005年03期
4 李弟平;罗三定;;一种基于几何特征的改进模板匹配算法[J];电脑知识与技术;2006年17期
5 刘彩霞;;数据与模板匹配算法研究[J];怀化学院学报;2008年11期
6 侯梦华;吕文阁;梁亮;;基于竞选算法的模板匹配算法[J];机电工程技术;2008年04期
7 栾柱晓;唐t;郑群英;;一种改进的人眼模板匹配算法[J];计算机系统应用;2009年12期
8 唐t;李青;;一种快速的模板匹配算法[J];计算机应用;2010年06期
9 杨勇兵;何绪昊;戚其丰;胡跃明;;一种新型的快速模板匹配算法[J];电子工艺技术;2010年03期
10 谢方方;杨文飞;陈静;李芳;于越;;模板匹配算法的两种实现方法比较[J];信息技术;2012年10期
相关会议论文 前2条
1 余立功;王强;陈纯;;多尺度模板匹配算法研究[A];全国第16届计算机科学与技术应用(CACIS)学术会议论文集[C];2004年
2 宋仁庭;杨卫平;杨明月;;模板匹配算法对运动目标自动锁定跟踪的研究[A];2007年光电探测与制导技术的发展与应用研讨会论文集[C];2007年
相关博士学位论文 前2条
1 董晶;模板图像快速可靠匹配技术研究[D];国防科学技术大学;2015年
2 陈洋;面向植物电生理多源数据的在线分析方法研究[D];中国农业大学;2016年
相关硕士学位论文 前10条
1 陈秋强;基于机器视觉定位的表壳镶钻机控制系统研究与开发[D];华南理工大学;2015年
2 唐红强;基于GRM模板匹配算法的车型和车系识别[D];电子科技大学;2014年
3 卓林超;面向物流的乱序数据处理方法研究[D];南京邮电大学;2015年
4 杨诚;LED晶圆片的快速模板匹配算法研究[D];哈尔滨工业大学;2016年
5 梅亚敏;融合先验知识的场景文本识别应用研究[D];电子科技大学;2016年
6 邱正师;基于KRTS的实时视觉处理系统与模板匹配算法研究[D];山东大学;2017年
7 邹广华;基于几何特征的快速模板匹配算法[D];哈尔滨工业大学;2010年
8 张建华;基于灰度的模板匹配算法研究[D];内蒙古农业大学;2013年
9 张俊凯;一种快速的旋转模板匹配算法的设计与实现[D];哈尔滨工业大学;2013年
10 胡t焧,
本文编号:2160403
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2160403.html