剪切波构造方法研究及其在图像处理中的应用
[Abstract]:Wavelet transform is a kind of multi-resolution analysis method. Its transformation process is similar to pyramid transform and has been widely used in image processing and signal processing. The main energy of the image, the high frequency subband contains the detailed information of the image in different scales and directions. As a new mathematical tool, wavelet transform has good time-frequency analysis ability. It uses step-by-step fine time-domain sampling step for the high frequency part and "focuses" on any detail of the object, so it is also known as "mathematical display". However, the traditional wavelet transform can only capture the horizontal, vertical and diagonal information, and can not well represent the "line singularity" of the image. It has certain limitations in processing two-dimensional signals. Several reserve functions provide a new method for constructing shear waves on cones and low frequencies. Finite discrete shear wave transform has good localization and translation invariance. In order to improve the fusion accuracy of multi-focus images and infrared and visible images, a finite discrete shear wave is proposed. Firstly, low-frequency subband coefficients and high-frequency subband coefficients of different scales and directions are obtained by FDST decomposition of the image after strict registration. Then, low-frequency subband coefficients are fused by weighted image gradient information correlation factor. The high-frequency sub-band coefficients are fused by the contrast between the low-frequency coefficients and the high-frequency coefficients, and the contrast is used as the criterion for the selection of the measurement coefficients. Finally, the fused image is reconstructed by inverse transform of finite discrete shear wave, and the fused image is evaluated subjectively and objectively. Four different image fusion strategies are proposed to overcome the shortcomings of the existing image fusion process. To illustrate the effectiveness of the fusion strategy and the advantages of the finite discrete shear wave transform, the multi-focus image and the infrared and visible image are simulated. Firstly, the fusion results of the same fusion strategy in different transform domains are compared. The wavelet transform used here includes discrete wavelet transform (DWT), non-downsampling contour wave transform (NSCT), non-sampling dual-tree complex wavelet transform (UDTCWT), non-downsampling shear wave transform (NSST), finite discrete shear wave transform (FDST). Secondly, the wavelet transform used in the same transform domain is compared. Finally, the fusion results of different fusion strategies are compared with those of other fusion algorithms. The experimental results show that the proposed algorithm not only has good subjective visual effects, but also improves the objective indicators, which fully demonstrates the effectiveness of the proposed fusion algorithm.
【学位授予单位】:西安建筑科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 邓江洪;赵领;;基于小波变换的激光雷达图像融合研究[J];激光杂志;2015年12期
2 陈清江;王世恒;陈欢;;二元向量值双正交小波滤波器的构造与性质[J];兰州理工大学学报;2015年02期
3 郑伟;孙雪青;李哲;;shearlet变换和区域特性相结合的图像融合[J];激光技术;2015年01期
4 陈广秋;高印寒;刘广文;孙俊喜;;有限离散剪切波域结合区域客观评价的图像融合[J];吉林大学学报(工学版);2014年06期
5 王正林;;基于对比度的小波图像融合算法研究[J];激光与红外;2014年09期
6 徐小军;王友仁;陈帅;;基于下采样分数阶小波变换的图像融合新方法[J];仪器仪表学报;2014年09期
7 韩潇;彭力;;基于改进拉普拉斯金字塔的图像融合方法[J];自动化与仪器仪表;2014年05期
8 王建;王必宁;杨根善;张少应;;基于形态学金字塔的医学图像融合技术[J];兵工自动化;2014年01期
9 童涛;杨桄;谭海峰;任春颖;;基于NSCT变换的多传感器图像融合算法[J];地理与地理信息科学;2013年02期
10 石智;张卓;岳彦刚;;基于Shearlet变换的自适应图像融合算法[J];光子学报;2013年01期
相关博士学位论文 前5条
1 陈广秋;基于多尺度分析的多传感器图像融合技术研究[D];吉林大学;2015年
2 杨扬;基于多尺度分析的图像融合算法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2013年
3 宋宜美;图像处理的超小波分析与变分方法研究[D];西安电子科技大学;2012年
4 倪伟;基于多尺度几何分析的图像处理技术研究[D];西安电子科技大学;2008年
5 衡彤;小波分析及其应用研究[D];四川大学;2003年
相关硕士学位论文 前2条
1 刘志国;小波框架与小波紧框架的构造[D];陕西师范大学;2006年
2 徐慧;实时数据库中数据压缩算法的研究[D];浙江大学;2006年
,本文编号:2180835
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2180835.html