当前位置:主页 > 科技论文 > 软件论文 >

基于流形学习的数据降维技术及工程应用研究

发布时间:2018-08-18 14:55
【摘要】:随着人工智能和大数据技术的飞速突破,机器学习和数据挖掘这些人工智能核心研究领域往往会得到普遍呈现出高维、非线性特性的数据。以模拟电路故障诊断为例,特别是在一个高度集成的电路板上进行板级故障定位时,由于元器件数量大且存在容差,导致采集到的数据更倾向于以高维数、非线性结构分布。对于这些大规模、高维非线性的数据,人们想要直观的感知隐藏在高维数据下的有用的知识,难度可想而知。数据降维,是高维数据维数降低的最有效途径之一。数据降维技术可分为线性降维和非线性降维。线性降维技术应用广泛,但对包含大量非线性数据的实际工程应用降维效果较差,这也使非线性降维技术逐渐成为当前的研究热点。为获取高维且难以理解的数据的低维表示,基于流形学习的局部线性嵌入维数约减方法利用局部线性和全局非线性的假设,使其在减少高维数据维数的过程中,仍可保持高维数据的原有结构。这种特性使其成为机器学习研究领域的研究热点之一。本文研究使用基于流形学习方法的局部线性嵌入(Local Linear Embedding,LLE)技术进行特征降维和特征提取的问题。针对模拟电路故障诊断工程中特征维数高问题,提出了一种基于小波包分解和LLE算法相结合的特征维数约简方案,以两级四运放低通滤波器电路为研究对象,通过基于克隆选择算法的故障诊断研究了故障特征维数约简技术。实验研究结果验证了本文提出的算法在模拟电路故障诊断特征降维问题的适用性,从而为LLE算法在复杂数据降维的工程应用提供了有用的参考。
[Abstract]:With the rapid breakthrough of artificial intelligence and big data technology, machine learning and data mining, which are the core research fields of artificial intelligence, often get high dimensional, nonlinear data. Taking analog circuit fault diagnosis as an example, especially in a highly integrated circuit board fault location, because of the large number of components and tolerance, the collected data tend to be distributed in high dimension and nonlinear structure. For these large-scale, high-dimensional nonlinear data, people want to intuitively perceive the useful knowledge hidden in high-dimensional data, it is difficult to imagine. Data dimensionality reduction is one of the most effective ways to reduce the dimensionality of high dimensional data. Data dimensionality reduction can be divided into linear reduction and nonlinear dimensionality reduction. Linear dimensionality reduction technology is widely used, but it has poor effect on practical engineering applications containing a large amount of nonlinear data, which makes nonlinear dimensionality reduction technology become a hot research topic at present. In order to obtain the low-dimensional representation of high-dimensional and incomprehensible data, the locally linear embedding dimension reduction method based on manifold learning makes use of the assumptions of local linearity and global nonlinearity to reduce the dimensionality of high-dimensional data. The original structure of high-dimensional data can still be maintained. This characteristic makes it one of the hotspots in the field of machine learning. In this paper, the problem of feature reduction and feature extraction using locally linear embedded (Local Linear embedded LLE technique based on manifold learning method is studied. In order to solve the problem of high characteristic dimension in analog circuit fault diagnosis engineering, a new feature dimension reduction scheme based on wavelet packet decomposition and LLE algorithm is proposed. Fault feature dimension reduction technique based on clonal selection algorithm is studied in this paper. The experimental results verify the applicability of the proposed algorithm in the characteristic dimensionality reduction problem of analog circuit fault diagnosis, which provides a useful reference for the engineering application of LLE algorithm in complex data dimensionality reduction.
【学位授予单位】:北方工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.4

【参考文献】

相关期刊论文 前4条

1 廖剑;周绍磊;史贤俊;王朕;;模拟电路故障特征降维方法[J];振动.测试与诊断;2015年02期

2 毛向德;王庆贤;董唯光;梁金平;朱科;;小波包神经网络与数据降维的移相全桥变换器的故障诊断[J];电源学报;2014年04期

3 彭良玉;禹旺兵;;基于小波分析和克隆选择算法的模拟电路故障诊断[J];电工技术学报;2007年06期

4 肖人彬,王磊;人工免疫系统:原理、模型、分析及展望[J];计算机学报;2002年12期

相关会议论文 前1条

1 刘新东;;基于LLE和SVM的模拟电路软故障诊断[A];'2010系统仿真技术及其应用学术会议论文集[C];2010年

相关博士学位论文 前3条

1 雷迎科;流形学习算法及其应用研究[D];中国科学技术大学;2011年

2 詹宇斌;流形学习理论与方法及其应用研究[D];国防科学技术大学;2011年

3 李波;基于流形学习的特征提取方法及其应用研究[D];中国科学技术大学;2008年

相关硕士学位论文 前10条

1 陈磊;基于线性子空间与流形学习的人脸识别算法研究[D];西安电子科技大学;2014年

2 王勤勇;基于人工免疫技术的模拟电路故障诊断技术[D];北方工业大学;2013年

3 闫志敏;基于流形学习的数据约简方法研究与应用[D];山东师范大学;2012年

4 唐文俊;基于流形学习的数据降维的研究[D];广东工业大学;2012年

5 宋丽伟;基于小波分析和神经网络的模拟电路故障诊断[D];湖南大学;2012年

6 臧家鹏;互联网环境下企业信息获取与加工技术及应用探究[D];华中科技大学;2012年

7 罗琨;基于小波分析和人工神经网络的容差模拟电路故障诊断[D];湖南大学;2011年

8 黄移军;基于局部线性嵌入的高维数据降维研究[D];中南大学;2009年

9 李盛丹;基于VC++和MATLAB的车型分类及车辆计数系统[D];东北师范大学;2009年

10 王超;基于流形学习的有监督降维方法研究[D];中国科学技术大学;2009年



本文编号:2189820

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2189820.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1f88b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com