基于用户上网数据的电影个性化推荐系统研究
[Abstract]:In the past ten years, with the gradual popularization of the Internet in society, the phenomenon of information explosion is becoming more and more obvious. Users in various fields provide information for the Internet, which makes the Internet an all-encompassing and all-inclusive information aggregator. Internet users find it hard to quickly find information that suits their interests; each user uses a search engine to retrieve information with the same keyword and the same result. However, the information demand of users is diversified and individualized. Therefore, the traditional information retrieval system represented by homogeneous search engines can not meet the needs of thousands of users, and the personalized recommendation system has come to the front of the stage under this background. By mining the historical behavior data of users, the personalized recommendation system extracts the records related to interest, calculates the points of interest of users according to certain rules algorithm, and then proactively pushes the information to the users. Thus, the contradiction between the large amount of information and the difficulty of information selection is solved. The recommendation system continuously updates and iterates the user's interest by tracking the user's historical behavior for a long time, so that the recommended information always matches the user's point of interest, so that the user can obtain the information of his interest more conveniently. The ultimate goal is to achieve the user-oriented personalized customization push. This paper describes how to construct a complete film knowledge map so as to structurally describe user behavior, and divide films into independent films and series films according to the characteristics of the user's viewing behavior and the properties of the film itself. A finer-grained film knowledge map is constructed, and a set of algorithms for discovering film series is proposed. The basic data is the user's online request, which can obtain the user's interest in movies without the user's participation, and avoid the problems such as incompleteness and inconvenient of the user's subjective choice. Through analyzing and processing the user's original Internet request, The online data related to movies are extracted, and then, according to the movie knowledge map, the user's online behavior is mapped to user's interest behavior, and the purpose of extracting user's interest is achieved. Based on the TF-IDF algorithm, the user interest degree of each dimension is calculated, and the user interest model in vector form is constructed, and then the total interest degree of the user to the movie is calculated according to the interest degree of the user to each element of a movie. Finally, the high recall rate and accuracy of the proposed scheme are proved by experimental analysis.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 王守];;走进个性化推荐系统[J];程序员;2009年12期
2 张亚伟;苏一丹;;基于移动Agent的分布式个性化推荐系统[J];微计算机信息;2008年09期
3 许良;汪克夷;;基于移动Agent的个性化推荐系统的研究[J];消费导刊;2008年09期
4 刘洋;;面向电子商务网站的个性化推荐系统[J];中小企业管理与科技(上旬刊);2012年01期
5 麻旺勇;叶跃苗;;基于位置感知的个性化推荐系统的设计与实现[J];福建电脑;2014年01期
6 余建芳;;个性化推荐系统在民族院校图书馆信息服务中的设计探析——以甘肃民族师范学院图书馆为例[J];福建电脑;2014年01期
7 杨海涛;石磊;卫琳;;一个基于搜索结果的个性化推荐系统[J];计算机工程与应用;2006年32期
8 姜有辉;高琳琦;;个性化推荐系统中顾客信息的隐式采集方法研究[J];现代情报;2006年11期
9 江秀佳;何源光;;国内电子商务个性化推荐系统改进研究[J];图书情报工作;2009年16期
10 杨静;;电子商务个性化推荐系统的构建[J];现代计算机(专业版);2012年28期
相关会议论文 前4条
1 黎陨;詹晓红;孙莉;;基于频繁遍历路径的个性化推荐系统[A];第二十届全国数据库学术会议论文集(技术报告篇)[C];2003年
2 周皓峰;高攀;施伯乐;;一个基于兴趣度包含负属性项的关联规则采掘算法[A];第十七届全国数据库学术会议论文集(研究报告篇)[C];2000年
3 曲爽;谷文祥;;基于兴趣度和负项集的关联规则挖掘算法的研究[A];2005年全国理论计算机科学学术年会论文集[C];2005年
4 方炜炜;杨炳儒;唐志刚;杨君;;基于客观兴趣度的关联规则优化算法研究[A];2008'中国信息技术与应用学术论坛论文集(一)[C];2008年
相关重要报纸文章 前1条
1 国防科技大学计算机学院 应晓敏 窦文华;古老概念的凤凰涅i肹N];计算机世界;2003年
相关硕士学位论文 前10条
1 赵鹏程;基于用户上网数据的电影个性化推荐系统研究[D];北京邮电大学;2015年
2 倪鹏飞;基于顾客满意度的电子商务个性化推荐系统评价研究[D];河北大学;2015年
3 贾忠涛;电影个性化推荐系统的研究与实现[D];西南科技大学;2015年
4 何俊;基于社交网络的个性化推荐系统的设计与实现[D];贵州大学;2015年
5 肖巧龙;基于用户隐性行为的个性化推荐系统的设计及研究[D];南京财经大学;2014年
6 于淼;基于LBS的个性化推荐系统的研究与设计[D];北京邮电大学;2015年
7 汪亭廷;美味网电子商务个性化推荐系统的设计与实现[D];电子科技大学;2014年
8 陈博文;融合信任网络的个性化推荐系统研究[D];上海交通大学;2015年
9 温瑞龙;基于社交网络的个性化推荐系统研究与实现[D];浙江工业大学;2015年
10 刘旭;基于情感权重的个性化推荐系统[D];南京邮电大学;2015年
,本文编号:2195787
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2195787.html