基于机器视觉的交通压线判别方法研究
[Abstract]:Traffic is the support of urban development, which is related to all aspects of people's life. Traffic criterion is the foundation of traffic development. With the development of science and technology, intelligent transportation begins to enter people's life. Based on the development of Intelligent Transportation system (ITS), this paper makes a deep research on the traffic scene vehicle line breaking rules and regulations, combines the current mature image processing and machine learning technology, studies the separation of the vehicle foreground in the video. The detection of road route, the judgment of vehicle pressure line and the detection technology of license plate in video stream. In this paper, based on Gao Si's background modeling theory and CodeBook modeling method, Hough transform line detection and support vector machine (SVM), vehicle information acquisition after traffic line detection and detection is studied. The main contents of this paper are as follows: (1) in image preprocessing, the HSV color model is analyzed; the equalization technology is used for the image, and different equalization range is set for different images; several filtering and denoising techniques are studied. In this paper, the effective bilateral filtering for traffic images is used, several edge detection techniques are experimented, and finally the Canny operator edge detection algorithm is selected to segment the image. (2) the binarization threshold of the image is selected and studied by two methods. Finally, we use the method of image segmentation to obtain local threshold and then combine the image binarization. For the segmentation of video vehicle foreground, we study the hybrid Gao Si background modeling and CodeBook algorithm, respectively. Finally, the CodeBook algorithm is used as the segmentation method of the experiment, and the results are processed. The effective foreground range of the vehicle is obtained by using the expansion algorithm and the overflowing filling technique. (3) the lane line is detected by using the Hough transform. The results are processed to obtain the effective lane position; the moment feature and quadrilateral contour are studied to obtain the effective range of the vehicle contour; the vehicle feature is used to judge the vehicle line. And summarizes the process of line pressing. (4) aiming at a wide range of traffic vision, the support vector machine (SVM) plus image HOG feature is proposed to detect the license plate area in the image, and a large number of vehicle image data are used to carry out the experiment. The algorithm is used to obtain an efficient classification model and to achieve license plate location search in a wide range of visual regions.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 徐渊;许晓亮;李才年;姜梅;张建国;;结合SVM分类器与HOG特征提取的行人检测[J];计算机工程;2016年01期
2 彭红;肖进胜;程显;李必军;宋晓;;基于扩展卡尔曼滤波器的车道线检测算法[J];光电子·激光;2015年03期
3 王海;蔡英凤;林国余;张为公;;基于方向可变Haar特征和双曲线模型的车道线检测方法[J];交通运输工程学报;2014年05期
4 陆化普;李瑞敏;;城市智能交通系统的发展现状与趋势[J];工程研究-跨学科视野中的工程;2014年01期
5 王建华;徐贵力;糜长军;赵敏;田裕鹏;王彪;徐培智;;车辆压线检测方法[J];电子科技;2013年02期
6 刘松涛;殷福亮;;基于图割的图像分割方法及其新进展[J];自动化学报;2012年06期
7 郭小春;王绵;;车牌自动识别系统分析[J];泰山乡镇企业职工大学学报;2011年03期
8 顾亚祥;丁世飞;;支持向量机研究进展[J];计算机科学;2011年02期
9 杨喜宁;段建民;高德芝;郑榜贵;;基于改进Hough变换的车道线检测技术[J];计算机测量与控制;2010年02期
10 廖斌;陈尚锋;肖山竹;卢焕章;;局部矩不变量轮廓图像角点检测[J];计算机应用;2006年S2期
相关博士学位论文 前2条
1 田鹏辉;视频图像中运动目标检测与跟踪方法研究[D];长安大学;2013年
2 佟守愚;基于视频技术的交通违章检测与识别理论及方法研究[D];吉林大学;2006年
相关硕士学位论文 前5条
1 慕春雷;基于HOG特征的人脸识别系统研究[D];电子科技大学;2013年
2 滕星;图像处理技术在车辆检测系统中的应用[D];浙江工业大学;2012年
3 史琳琳;车牌识别中车牌定位技术的研究[D];东华大学;2012年
4 黄春贤;基于视频的车辆违禁压线检测的研究与实现[D];电子科技大学;2011年
5 孟涛;车牌识别关键技术的研究与实现[D];华中科技大学;2006年
,本文编号:2225852
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2225852.html