基于Redis的结构化数据缓存系统的设计与实现
[Abstract]:With the continuous expansion of the data scale and the sharp increase of the number of users, the traditional structured database access is facing more and more pressure. Improving the reading and writing performance of structured databases such as MySQL becomes a problem to be solved urgently. Redis memory database puts all data in memory for management, which greatly improves the performance of data access and is suitable for data cache management. It is of great theoretical significance and practical value to design a cache strategy in Redis to realize the cache of structured data in order to reduce the access pressure of MySQL database and improve the performance of reading and writing. Based on the deep analysis of the data characteristics and access process of structured data, the structure of structured database and proxy server is used, and the Redis memory database is deployed on the proxy server. A cache system for structured data is designed and implemented on Redis. In order to solve the problem that part of the query result set is too large, a prefix caching method based on the behavior of user query frequency, read / write ratio and so on is designed, in which only the prefix part of data is cached in the cache block. When the actual demand of the user increases, the cache block is expanded immediately to supplement the data required by the user; when the user needs the block data to be reduced, the inert update scheme is adopted to set the mark to be updated. When waiting for memory shortage, compression of memory space is unified. This method can not only better meet the needs of users, but also release a large amount of memory space when memory is out of capacity, thus reducing the probability of cache replacement. When the cache space is insufficient, the system also proposes an adaptive cache replacement algorithm for query result set type. The Hybrid replacement algorithm is improved and combined with the LFU replacement algorithm to better meet the actual needs of structured data cache. Based on the actual query requirements of users, the system makes full use of the good read and write performance of Redis memory database, and makes more efficient use of memory space, thus improving the performance of the cache system. The experimental results show that the system improves the number of cache blocks by prefix cache strategy and cache block compression scheme, thus improving the hit rate of cache and the hit rate of bytes. It has certain application value.
【学位授予单位】:华中科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP311.13
【参考文献】
相关期刊论文 前10条
1 阳振坤;;OceanBase关系数据库架构[J];华东师范大学学报(自然科学版);2014年05期
2 曹丹丹;乐嘉锦;夏小玲;;Redis数据库在视频推荐服务系统中的应用[J];计算机与现代化;2013年10期
3 刘高军;王帝澳;;基于Redis的海量小文件分布式存储方法研究[J];计算机工程与科学;2013年10期
4 曾超宇;李金香;;Redis在高速缓存系统中的应用[J];微型机与应用;2013年12期
5 谢华成;陈向东;;面向云存储的非结构化数据存取[J];计算机应用;2012年07期
6 尤朝;周明辉;林泊;曹东刚;梅宏;;一种在线的动态网页分块缓存方法[J];电子学报;2009年05期
7 杨春贵;吴产乐;彭鸿雁;;一种有效的Web代理缓存替换算法[J];计算机工程;2007年03期
8 张超群,李陶深,张增芳;代理缓存一致性策略和替换策略的研究[J];计算机工程与设计;2005年11期
9 杨武军,张继荣,屈军锁;内存数据库技术综述[J];西安邮电学院学报;2005年03期
10 涂小朋;汪林林;;分布式空间数据库中基于事务的客户端高速缓存技术研究[J];计算机科学;2004年06期
相关博士学位论文 前2条
1 霍龙社;互联网流媒体传输关键技术研究[D];中国科学院研究生院(计算技术研究所);2006年
2 高奎;实时流媒体系统若干关键技术的研究[D];中国科学院研究生院(计算技术研究所);2005年
相关硕士学位论文 前6条
1 许光军;内容中心网络缓存放置策略研究[D];北京邮电大学;2015年
2 万里鹏;非结构化到结构化数据转换的研究与实现[D];西南交通大学;2013年
3 谢海洋;面向分布式数据库的自适应多级缓存机制研究[D];华中科技大学;2013年
4 詹盛辉;失效盘优先的高速缓存替换方案的设计与实现[D];华中科技大学;2013年
5 狄刚;HTTP实现代理服务器及缓存替换算法的研究[D];吉林大学;2010年
6 孔峰;流媒体代理服务器缓存研究与实现[D];北京邮电大学;2009年
,本文编号:2231614
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2231614.html