甲状腺结节超声图像纹理特征提取及半监督分级方法研究
[Abstract]:Thyroid nodule is a common disease in clinic. Because of its low examination cost, no trauma, fast imaging speed, real-time diagnosis and strong repeatability, B-mode ultrasound imaging technology has become the most commonly used examination method. In this paper, we take ultrasound image as the research object, take the extraction of the texture feature of ultrasound subimage and the ultrasonic sign of region of interest (Region of Interest,ROI) of quantized nodule as the research object, and use the ultrasonic image and clinical data of the existing cases as the research object. In order to provide the feature set for the identification model, the ultrasonic features of ultrasound image texture and thyroid ultrasound image report and data system (thyroid imaging reporting and data system,TI-RADS) were analyzed and studied. First of all, 449 cases of thyroid nodules were analyzed and sorted. Ultrasound images were intercepted from ultrasonic video and the boundary of nodular ROI was labeled. According to the standard of TI-RADS, various nodular signs, the manifestation of each sign and the final diagnosis of nodule were arranged. Two common image segmentation techniques, NCut and Snakes, are introduced and applied to ROI extraction from thyroid nodules. Then, based on two tree complex wavelet transform (Dua1 Tree Complex Wavelet Transform,DT-CWT) and Gabor filter, a multi-scale fusion method is proposed to extract the texture features of thyroid nodules. In this method, first of all, the ultrasonic subimage containing thyroid nodule ROI is transformed by DT-CWT and Gabor to obtain the texture image, then the mean value and variance of the texture image are calculated, and the feature fusion is realized by combining the head and tail. Finally, the benign and malignant thyroid nodules can be distinguished by classifying and discriminating. Finally, this paper presents a semi-supervised classification method of thyroid nodules based on TI-RADS. TI-RADS is the standard for the diagnosis of thyroid nodules. As a computer-aided diagnosis system, the ultrasonic features of TI-RADS are quantitatively analyzed, and these signs are used as characteristic vectors to distinguish thyroid nodules, and then the clustering results obtained by semi-supervised fuzzy C-means clustering model are applied. The experimental results show that the method can distinguish different thyroid nodules. In this paper, we studied the thyroid ultrasound images from the texture features and classification methods of thyroid nodules, and achieved good results. As a kind of computer-aided diagnosis method, it can help doctors diagnose thyroid nodules in clinic, reduce doctors' subjective judgment, provide effective diagnostic advice, and further promote the application of machine learning in medicine.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R581;TP391.41
【相似文献】
相关期刊论文 前2条
1 杨振森;李传富;周康源;刘伟;冯焕清;;基于小波变换的超声图像纹理特征提取及前列腺癌诊断[J];航天医学与医学工程;2009年04期
2 ;[J];;年期
相关会议论文 前3条
1 刘玉芳;刘定生;;利用纹理特征提取城市用地信息方法探索[A];中国地理学会2004年学术年会暨海峡两岸地理学术研讨会论文摘要集[C];2004年
2 彭玲;赵忠明;;遥感图像纹理特征提取的若干方法[A];信号与信息处理技术第三届信号与信息处理全国联合学术会议论文集[C];2004年
3 曾文涵;杨练根;谢铁邦;李柱;;弹头发射痕迹纹理特征提取方法的研究[A];中国仪器仪表学会第三届青年学术会议论文集(上)[C];2001年
相关博士学位论文 前2条
1 毕于慧;彩色航空图像森林纹理特征提取方法的研究[D];北京林业大学;2007年
2 李朝荣;Copula驱动的小波域纹理特征提取研究[D];电子科技大学;2013年
相关硕士学位论文 前10条
1 肖敏敏;基于多维特征融合的地震剖面相似性研究[D];西安石油大学;2015年
2 陈辰;基于相对相域频繁项集的纹理特征提取方法及其在图像分类中的应用[D];兰州大学;2015年
3 李洪伟;基于高分辨率影像纹理特征提取日光温室方法研究[D];兰州大学;2016年
4 杨旭;木材加工自动化中的板材缺陷检测技术研究[D];南京林业大学;2016年
5 曹家梓;图像的纹理特征提取与力/触觉表达研究[D];东南大学;2016年
6 邬志强;肋骨皮质纹理特征提取分类算法设计[D];齐齐哈尔大学;2016年
7 姚骋天;基于图像纹理特征提取方法的人脸识别[D];中国计量大学;2016年
8 王朴;人脸局部纹理特征提取方法及其应用研究[D];重庆理工大学;2016年
9 贺亚超;强光照下内河溢油纹理特征提取研究[D];大连海事大学;2017年
10 王昊;甲状腺结节超声图像纹理特征提取及半监督分级方法研究[D];西南交通大学;2017年
,本文编号:2261033
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2261033.html