基于GPU的密度峰值并行聚类算法(英文)
[Abstract]:DP (density peak), a clustering method based on peak density, is widely used in scientific research because of its novel and effective characteristics. However, when the cluster center is determined, DP operates on each pair of data points multiple times, resulting in high computational complexity. In this paper, we propose an efficient parallel peak density algorithm based on GPU (graphics processing unit). We analyze the principle of peak density clustering algorithm to study its computational bottleneck and evaluate its parallelism potential. According to the analysis, we propose CUDA-DP (compute unified device architecture-DP), an efficient parallel density peak clustering algorithm for GPU architecture, and implement this parallel method with CUDA. Specifically, we use shared memory to reduce global memory access. Further, in order to take advantage of GPU's merge access mechanism, we reconstruct the data structure of CUDA-DP programs from AOS (array of structures) to SOA (structure of arrays). In addition, the binary search method and the sampling method are introduced to avoid the computational overhead caused by sorting the distance matrix. The experimental results show that CUDA-DP can achieve more than 45 times acceleration compared with the density peak realization based on CPU.
【作者单位】: National
【基金】:supported by the National Basic Research Program(973)of China(No.2014CB340303) the National Natural Science Foundation of China(Nos.61502509 and 61222205) the Program for New Century Excellent Talents in University the Fok Ying-Tong Education Foundation(No.141066)
【分类号】:TP311.13
【参考文献】
相关期刊论文 前2条
1 Yaobin He;Fan Zhang;Ye Li;Jun Huang;Ling Yin;Chengzhong Xu;;Multiple Routes Recommendation System on Massive Taxi Trajectories[J];Tsinghua Science and Technology;2016年05期
2 Jiaxin Li;Dongsheng Li;Yuming Ye;Xicheng Lu;;Efficient Multi-Tenant Virtual Machine Allocation in Cloud Data Centers[J];Tsinghua Science and Technology;2015年01期
【共引文献】
相关期刊论文 前5条
1 Ke-shi GE;Hua-you SU;Dong-sheng LI;Xi-cheng LU;;基于GPU的密度峰值并行聚类算法(英文)[J];Frontiers of Information Technology & Electronic Engineering;2017年07期
2 Lizhao Liu;Wentu Gao;Jian Liu;Huayi Yin;Huarong Xu;Shunzhi Zhu;;Multi-Embed Nonlinear Scale-Space for Image Trust Root Generation[J];中国通信;2016年11期
3 Yun-xiang ZHAO;Wan-xin ZHANG;Dong-sheng LI;Zhen HUANG;Min-ne LI;Xi-cheng LU;;负载均衡的分布式指纹识别系统(英文)[J];Frontiers of Information Technology & Electronic Engineering;2016年08期
4 Zhaoning ZHANG;Dongsheng LI;Kui WU;;Large-scale virtual machines provisioning in clouds:challenges and approaches[J];Frontiers of Computer Science;2016年01期
5 Zi-yang LI;Yi-ming ZHANG;Dong-sheng LI;Peng-fei ZHANG;Xi-cheng LU;;VirtMan:design and implementation of a fast booting system for homogeneous virtual machines in iVCE[J];Frontiers of Information Technology & Electronic Engineering;2016年02期
【二级参考文献】
相关期刊论文 前3条
1 LI Ming;Andrey Lukyanenko;Sasu Tarkoma;Antti Yl-Jski;;数据中心网络中的MPTCP Incast(英文)[J];中国通信;2014年04期
2 Waseem Ahmed;Yongwei Wu;;Estimation of Cloud Node Acquisition[J];Tsinghua Science and Technology;2014年01期
3 Wei Chen;Junwei Cao;Yuxin Wan;;QoS-Aware Virtual Machine Scheduling for Video Streaming Services in Multi-Cloud[J];Tsinghua Science and Technology;2013年03期
【相似文献】
相关期刊论文 前10条
1 马伯宁;王晨昊;汤晓安;匡纲要;;基于GPU的二维离散小波变换快速计算[J];国防科技大学学报;2011年03期
2 ZW;;3D游戏利器 主流嵌入式处理器GPU逐个看[J];电脑迷;2011年19期
3 王志国;王贵锦;施陈博;苗权;林行刚;;积分图像的快速GPU计算[J];计算机应用研究;2011年10期
4 卢永菁;王东;;基于GPU的高速网络入侵检测系统设计[J];计算机工程与应用;2011年33期
5 储t熆,
本文编号:2271690
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2271690.html