社交网络好友推荐系统的设计与实现
[Abstract]:With the rapid development of the Internet, people's access to information is more and more inclined to the Internet, and the way to make friends is also extended to the social network. The essence of social communication is the communication between people. Each user in social network has his own social circle, and through this social circle, information transmission, sharing and communication are realized. However, with the development of the Internet and the evolution of the social network, the user group in the social network is gradually huge, the relationship between users is becoming more and more complex, and the amount of data generated by the users is more and more. All these factors make it more difficult for users to find friends with similar interests and establish their own social circle. In this context, the friend recommendation system emerges as the times require, and recommends "friends" with similar interests to the target users. Taking Weibo, a typical social network, as the research object, this paper designs and implements the friend recommendation system of social network. Firstly, we collect and preprocess the user data of Weibo, and obtain the useful data for the system design and implementation. Secondly, the LDA thematic model is used to analyze the Weibo content of the user, and then the user theme distribution information is obtained, and the interest preference of the user is calculated and expressed according to these thematic distribution information. Thirdly, according to the cosine similarity measure method, the similarity between different users' interests is calculated, and N users with the largest similarity to the target user are selected as the friend recommendation results to present to the target user. Finally, the accuracy index is used to evaluate the friend recommendation system, which verifies the improvement of recommendation accuracy. Compared with the traditional friend recommendation system based on user's personalized label, educational background or geographical location, the friend recommendation system proposed in this paper, through analyzing Weibo user's historical Weibo data, excavates user's interest. Therefore, the description of user's interest is more representative, and the recommendation result presented to the user is more in line with the standard of "like-minded".
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.3
【参考文献】
相关期刊论文 前10条
1 向程冠;熊世桓;王东;;基于关联规则的社交网络好友推荐算法[J];中国科技论文;2014年01期
2 刘传振;;社会网络服务中好友推荐算法研究[J];科技传播;2013年19期
3 于海群;刘万军;邱云飞;;基于用户偏好的社会网络二级人脉推荐研究[J];计算机应用与软件;2012年04期
4 俞琰;邱广华;陈爱萍;;基于混合图的在线社交网络朋友推荐算法[J];现代图书情报技术;2011年11期
5 孙立伟;何国辉;吴礼发;;网络爬虫技术的研究[J];电脑知识与技术;2010年15期
6 张宇;刘雨东;计钊;;向量相似度测度方法[J];声学技术;2009年04期
7 王贤君;;信息冗余现象及对策探析[J];教育与职业;2005年36期
8 林渊渊;互联网信息冗余现象[J];当代传播;2004年05期
9 张东礼,汪东升,郑纬民;基于VSM的中文文本分类系统的设计与实现[J];清华大学学报(自然科学版);2003年09期
10 傅赛香,袁鼎荣,黄柏雄,钟智;基于统计的无词典分词方法[J];广西科学院学报;2002年04期
相关硕士学位论文 前10条
1 奉珊;社交网络的好友推荐算法研究[D];北京邮电大学;2015年
2 刘英;基于用户评论的个性化产品推荐系统[D];北京邮电大学;2015年
3 王星;基于Labeled LDA的微博用户兴趣识别系统的研究与实现[D];北京交通大学;2014年
4 方正;微博短文本分析技术研究及应用[D];电子科技大学;2014年
5 董星;基于Labeled-LDA的文本分类研究与实现[D];北京邮电大学;2014年
6 杨红磊;基于内容与社会过滤的好友推荐算法研究[D];内蒙古科技大学;2013年
7 赵茉莉;网络爬虫系统的研究与实现[D];电子科技大学;2013年
8 刘晶晶;面向微博的网络爬虫研究与实现[D];复旦大学;2012年
9 史岭峰;基于社交网络好友关系的图查询算法研究与应用[D];南京理工大学;2012年
10 方东昊;基于LDA的微博短文本分类技术的研究与实现[D];东北大学;2011年
,本文编号:2300751
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2300751.html