高阶掩码防护的设计实现安全性研究
[Abstract]:Since the mask countermeasure scheme was put forward, the security and generality of the scheme have been improved from the first order confrontation to the high order confrontation. The earliest first-order masking scheme is mainly aimed at DES algorithm, while the later first-order masking scheme mostly takes AES as the protection target, and aims at different hardware and software platforms, and reduces the time and space consumption continuously at the same time. While pursuing higher security, high-order mask schemes are also developing towards generalization. The main work is to design a generic S-box mask scheme to ensure that it can be applied to any S-box design and can resist any side channel attack. High-order masking schemes have been widely accepted as an algorithm-level proof-safe side channel protection method. The theoretical security proof represented by the ISW security framework and the arbitrary order masking schemes under this framework have emerged. However, for side channel analysis, the security of cryptographic algorithm design and implementation can not only be based on algorithm security, aiming at the gap between the theoretical security and practical security of this scheme. Roche and Prouff proposed a hardware-oriented security mask scheme in 2011, but this scheme can not be applied to the existing high-order mask design. It is only a hardware-level security implementation of the RivP scheme proposed by Rivain and Prouff on CHES2010. At the same time, taking the implementation of the d order secure finite field multiplication as an example, the number of times of performing the addition and multiplication needs to be increased from O (dt2) to O (df3), which has a great impact on the execution efficiency due to the increase of design resources. The practicability of the scheme is reduced. On an efficient and secure hardware design platform, firstly, the author analyzes that glitch caused by different delay may leak sensitive information. Compared with combinational logic design, the circuit in sequential design does not produce reduced order leakage. In addition to the existing glitch leaks, there are also leaks related to the hardware design structure. From the point of view of the cipher chip designer, the author analyzes the different hardware design structures of the key components in the masking scheme. The author uses mutual information method to analyze the security problems caused by concurrent design and proves theoretically the hidden danger of concurrent design. On the basis of finding out the hidden trouble of masking design, the safety and light safety design suggestions are given. Finally, the security of hardware design of high-order masking scheme under different design structures is compared through experiments, which proves that the experimental results are consistent with the theoretical research conclusions.
【作者单位】: 武汉大学计算机学院;电力芯片设计分析国家电网公司重点实验室;国网新疆电力公司检修公司;
【基金】:国家自然科学基金(61472292,61332019) 国家“九七三”重点基础研究发展规划项目基金(2014CB340601) 面向智能电网新一代高速高等级安全芯片关键技术研究(526816160015)资助~~
【分类号】:TP309
【相似文献】
相关期刊论文 前10条
1 张荣,郑浩然,黄国锐,王煦法;基于掩码技术的进化加速算法[J];计算机工程;2005年01期
2 唐明;王欣;李延斌;向潇;邱镇龙;张焕国;;针对轻量化掩码方案的功耗分析方法[J];密码学报;2014年01期
3 张秋花;万燕;姚砺;曾培峰;吴雄英;;基于二分法的纤维掩码阈值的计算[J];上海工程技术大学学报;2007年03期
4 潘东梅;;Access中使用输入掩码控制数据输入格式的方法[J];福建电脑;2011年08期
5 高燕燕;;浅谈Access中的输入掩码的应用[J];东方企业文化;2011年22期
6 ;Access掩码:是否保存字面值?[J];个人电脑;2000年03期
7 张晓;李菁;张俊彦;;基于安全芯片的AES算法掩码方案研究[J];硅谷;2013年13期
8 王创伟;张西红;李永浩;席伟;;基于时间延迟和掩码的抗DPA方法研究[J];计算机测量与控制;2011年11期
9 王安;于艳艳;陈曼;王小妹;张国双;;对一种纵向重用型AES掩码的能量分析攻击[J];密码学报;2014年01期
10 陈纯毅;杨华民;李文辉;蒋振刚;;基于环境遮挡掩码的物理正确柔和阴影绘制算法[J];吉林大学学报(工学版);2012年04期
相关会议论文 前4条
1 文晓阳;高能;荆继武;;论坛验证码技术的安全性分析[A];全国计算机安全学术交流会论文集(第二十二卷)[C];2007年
2 林曦;高文建;何朝阳;薛峰;许剑冰;徐泰山;薛禹胜;汪磊;;广西电网在线动态安全性分析系统[A];第三届广西青年学术年会论文集(自然科学篇)[C];2004年
3 林曦;高文建;何朝阳;薛峰;许剑冰;徐泰山;薛禹胜;汪磊;;广西电网在线动态安全性分析系统[A];广西电机工程学会第八届青年学术年会论文集[C];2004年
4 房其敏;金茂顺;;DPS6 GOOS6 MOD 400操作系统安全性分析和改进设想[A];第二次计算机安全技术交流会论文集[C];1987年
相关博士学位论文 前1条
1 张源;安卓平台安全性增强关键技术的研究[D];复旦大学;2014年
相关硕士学位论文 前10条
1 雷佳豪;基于位掩码规则的并行包分类算法研究[D];国防科学技术大学;2014年
2 张秋花;纤维图像掩码提取算法的研究[D];东华大学;2008年
3 徐佩;智能卡AES加密模块抗侧信道攻击掩码技术研究与实现[D];重庆大学;2015年
4 刘海清;基于随机掩码的AES算法抗DPA攻击硬件实现[D];国防科学技术大学;2008年
5 牛磊;云存储中数据审计协议的分析与设计[D];电子科技大学;2014年
6 孙健;基于AADL的综合航电系统资源配置安全性分析与验证[D];南京航空航天大学;2016年
7 范波;基于ECC的AMI通信快速安全性研究[D];南华大学;2016年
8 阮晨晖;区域PACS安全性的分析与实现[D];上海交通大学;2015年
9 张丰;电子商务支付模型的安全性研究[D];上海交通大学;2015年
10 孙森;信息隐藏的应用及其安全性研究[D];西安电子科技大学;2015年
,本文编号:2301680
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2301680.html