基于评分选取技术的推荐算法研究
[Abstract]:Recommendation system has become one of the most important information filtering tools in big data era. It can help users quickly locate valuable information from massive data and recommend it to users in the form of lists of items that may be of interest to users. The explosive amount of information on the Internet and the rapid growth of the number of users and items make the recommendation system face many challenges, of which scalability is one of the main challenges. Collaborative filtering is the most successful and widely used technology in the field of recommendation system. At present, in order to improve the scalability of collaborative filtering algorithms, many scholars have proposed many schemes based on clustering and parallel technology. Usually, they use all the user rating data in the modeling phase of the recommendation algorithm, without considering the quality factors of the data, and most of the existing papers focus on the scalability of the collaborative filtering algorithm based on the nearest neighbor. From the point of view of input source dataset, this paper puts forward the point of view: not all user behavior data make the same contribution to the final prediction model, especially for those active users who have a large number of behaviors. This paper holds that for active users, some representative behavioral data can already contain enough information to model users accurately and get a good recommended result in a shorter time. Based on the above viewpoint, this paper first explores the relationship between the number of user behaviors and the performance of the recommendation algorithm in the modeling phase of the recommendation algorithm through a series of experiments, and proposes a recommendation algorithm based on the selection of the score. In particular, all experiments in this paper considered both score prediction and TopN recommendation tasks. Then, this paper proposes a general scoring selection framework that considers both user and movie factors, and proposes three scoring selection strategies based on division and five scoring selection strategies based on statistics and information theory. To select the most representative score for each user. Finally, a large number of experiments have been done on MovieLens and Netflix datasets. The experimental results show that only using some representative behaviors of active users can reduce the running time of the algorithm while achieving the expected recommendation accuracy. This improves the scalability of the recommendation system, and the proposed scheme is suitable for all collaborative filtering algorithms.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 李颖基,彭宏,郑启伦,曾炜;自动分层推荐算法[J];计算机应用;2002年11期
2 徐义峰;徐云青;刘晓平;;一种基于时间序列性的推荐算法[J];计算机系统应用;2006年10期
3 余小鹏;;一种基于多层关联规则的推荐算法研究[J];计算机应用;2007年06期
4 张海玉;刘志都;杨彩;贾松浩;;基于页面聚类的推荐算法的改进[J];计算机应用与软件;2008年09期
5 张立燕;;一种基于用户事务模式的推荐算法[J];福建电脑;2009年03期
6 王晗;夏自谦;;基于蚁群算法和浏览路径的推荐算法研究[J];中国科技信息;2009年07期
7 周珊丹;周兴社;王海鹏;倪红波;张桂英;苗强;;智能博物馆环境下的个性化推荐算法[J];计算机工程与应用;2010年19期
8 王文;;个性化推荐算法研究[J];电脑知识与技术;2010年16期
9 张恺;秦亮曦;宁朝波;李文阁;;改进评价估计的混合推荐算法研究[J];微计算机信息;2010年36期
10 夏秀峰;代沁;丛丽晖;;用户显意识下的多重态度个性化推荐算法[J];计算机工程与应用;2011年16期
相关会议论文 前10条
1 王韬丞;罗喜军;杜小勇;;基于层次的推荐:一种新的个性化推荐算法[A];第二十四届中国数据库学术会议论文集(技术报告篇)[C];2007年
2 唐灿;;基于模糊用户心理模式的个性化推荐算法[A];2008年计算机应用技术交流会论文集[C];2008年
3 秦国;杜小勇;;基于用户层次信息的协同推荐算法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年
4 周玉妮;郑会颂;;基于浏览路径选择的蚁群推荐算法:用于移动商务个性化推荐系统[A];社会经济发展转型与系统工程——中国系统工程学会第17届学术年会论文集[C];2012年
5 苏日启;胡皓;汪秉宏;;基于网络的含时推荐算法[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年
6 梁莘q,
本文编号:2305040
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2305040.html