基于性能预测的Spark资源优化分配策略
[Abstract]:Spark has become the most popular distributed big data computing platform. Because of its high performance, good fault tolerance and unity, it has been widely used in the industry. However, because the operation of Spark platform is transparent to users, the tasks running on Spark are affected by many factors, such as data partitioning strategy, algorithm design and implementation, resource allocation of nodes and so on. This makes it very difficult to predict Spark performance. By establishing a performance model based on Spark task structure, this paper studies the execution time of Spark task under different data volume and partition strategy, and then finds out the balance between task execution time and cluster resource consumption. An optimal resource allocation strategy based on dynamic repartitioning is proposed. On the basis of fine-grained monitoring cluster resources, this paper analyzes the execution information of each stage of Spark task, establishes a performance model based on Spark task structure, and trains the parameters of the model through a large number of historical experimental data. The performance prediction of Spark computing task with different load types is realized. On this basis, we study the effect of partitioning policy on the execution time of Spark. We find that although increasing the degree of parallelism of nodes can improve the performance of computing tasks to some extent, in some cases, The performance improvement is considered to be minimal compared with the additional resource consumption, and when we have met the user's requirements for task runtime, these small performance improvements can be ignored. In order to save resources, we should reduce the allocation of resources as much as possible under the time requirement given by the user. We will find the best partitioning scheme by adding dynamic repartitioning to a series of actual Spark computing tasks and propose a repartitioning strategy based on task time prediction. On the premise of not sacrificing task running time too much, we can save cluster resources, find the balance between task execution time and cluster resource allocation, and guide users to use cluster resources reasonably for Spark tasks. The rationality of the performance model and the accuracy of the prediction of task execution time are verified by experiments in this paper. On this basis, we propose an optimal resource allocation strategy based on performance prediction, and find the optimized cluster resource allocation strategy through dynamic repartitioning in the Spark load set. To achieve a balance between task execution time and cluster resource consumption. The experimental results show that our optimization strategy can obviously save cluster resources in the execution time given by users and find a good balance between task execution time and cluster resource consumption.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.13
【相似文献】
相关期刊论文 前7条
1 陶洋;黄涛;唐毅;;基于主机负载的任务执行时间预测研究[J];计算机应用;2009年10期
2 栾翠菊;宋广华;郑耀;张继发;;一种网格并行任务执行时间预测算法[J];计算机集成制造系统;2007年09期
3 韩耀军;罗雪梅;;网格计算环境下任务执行时间的组合预测[J];计算机工程;2006年21期
4 吉勤;李培峰;朱巧明;马锋明;;网格环境下基于分块的任务执行时间预测算法[J];计算机应用;2009年07期
5 宋浒;李京;刘新春;;云环境中Bag-of-tasks应用的多核虚拟计算资源分配机制研究[J];小型微型计算机系统;2014年01期
6 张勰,龚龙庆;一种基于比特表的实时多任务新调度算法[J];单片机与嵌入式系统应用;2003年09期
7 ;Evaluation of energy transfer and utilization efficiency of azo dye removal by different pulsed electrical discharge modes[J];Chinese Science Bulletin;2008年12期
相关会议论文 前1条
1 ;Study on the spark discharge plasma jet driven by nanosecond pulses[A];第十五届全国等离子体科学技术会议会议摘要集[C];2011年
相关硕士学位论文 前10条
1 唐毅;网格环境中主机负载和任务执行时间预测研究[D];重庆邮电大学;2008年
2 廖志坚;基于历史运行轨迹的时间约束参数预测的研究[D];广东工业大学;2007年
3 刘江辉;基于RT-CORBA的任务运行时间预测研究[D];广东工业大学;2005年
4 王韬;基于Spark的聚类集成系统研究与设计[D];西南交通大学;2015年
5 陈晓康;基于Spark 云计算平台的改进K近邻算法研究[D];广东工业大学;2016年
6 牟善文;美国SPARK课程模式小学生体育课能量代谢特点及干预实验研究[D];首都体育学院;2016年
7 李争献;基于Spark的移动终端信息推送系统的设计与实现[D];华南理工大学;2016年
8 赵洋;基于spark的网络广告交易计费系统的设计与实现[D];哈尔滨工业大学;2016年
9 尚勃;Spark平台下基于深度学习的网络短文本情感分类研究[D];西安建筑科技大学;2016年
10 王海华;Spark数据处理平台中内存数据空间管理技术研究[D];北京工业大学;2016年
,本文编号:2308292
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2308292.html