基于中心对称LBP算子的虹膜识别改进算法研究
[Abstract]:In recent years, biometric technology has become more and more popular. Biometric recognition is based on the unique characteristics of the human body, including iris, fingerprints, palmprint, DNA and walking gait. Compared with other biological characteristics iris has been paid more and more attention by academia and business circles because of its uniqueness invariance anti-counterfeiting and inviolability. So iris payment can become the new direction of future payment. In this paper, the iris recognition in biometrics is taken as the main line, the main process of image processing in iris recognition algorithm is described in detail, and the algorithm of iris location and feature extraction is improved. The main work of this paper is as follows: (1) the meaning of biometrics, the characteristic contents, advantages and disadvantages of biometrics, the structure of iris and several indexes to judge iris recognition performance are introduced. It is described in detail that the database CASIA-Iris V4.CASIA-Iris V4 used in this paper contains six different subdatabases. The collection equipment, object and environment of each database are different. A concise description of the objects and conditions required for a complete iris payment system is given. (2) in iris location, the outer edge of the iris is broadly defined. An edge detection algorithm based on boundary gradient enhancement is proposed. In this paper, the inner iris edge is extracted by binary image, and then the outer iris edge is extracted by combining the edge gradient enhancement algorithm with the Canny operator. The method of least square circle fitting is used to fit the extracted inner and outer boundaries. (3) in the process of iris feature extraction and matching, the traditional LBP operator is first explained. The LBP rotation invariant mode and the LBP equivalent mode derived from traditional LBP are also introduced. On the basis of point (2), the improved centrosymmetric LBP operator is used to extract the features, and the coding method of the center-symmetric LBP operator is discussed. The improved centrosymmetric LBP operator can not only greatly reduce the memory consumption. Moreover, the rate of feature extraction was significantly increased. In the final match, the algorithm based on hamming distance is used to compare the image to be tested with the image stored in the database.
【学位授予单位】:江西理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 王祥;陈莉;;基于梯度边缘增强和极小值填充的分水岭分割算法[J];电脑知识与技术;2016年27期
2 肖强;尚岩;王春莉;张卓群;;虹膜识别技术国内外现状及对青岛市的发展建议[J];高科技与产业化;2016年04期
3 周海珍;熊登峰;;关于直方图均衡化算法在图像灰度处理中的应用研究[J];科技创新与应用;2015年32期
4 张伟;;移动支付新方式[J];百科知识;2015年14期
5 吴祥凤;;颠覆传统支付模式,开启生物支付新模式[J];时代金融;2015年06期
6 霍君;;基于LBP算子的虹膜特征提取方法[J];电子质量;2014年03期
7 李欢利;郭立红;李小明;王心醉;董月芳;;基于统计特征中心对称局部二值模式的虹膜识别[J];光学精密工程;2013年08期
8 吴成茂;;直方图均衡化的数学模型研究[J];电子学报;2013年03期
9 金秋春;童小利;;基于改进LBP的虹膜识别方法[J];软件导刊;2012年08期
10 张铎;;物联网物品标识体系与自动识别技术[J];中国自动识别技术;2012年01期
相关博士学位论文 前2条
1 袁晓燕;虹膜定位、形变及特征提取研究[D];上海交通大学;2008年
2 程宇奇;用于身份鉴别的虹膜识别算法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2010年
相关硕士学位论文 前4条
1 朱秋双;基于改进LBP的人脸识别算法研究[D];南京邮电大学;2015年
2 向维辉;基于Gabor滤波的完备CS-LBP算子图像纹理特征提取算法研究[D];昆明理工大学;2015年
3 徐国靖;基于形态学梯度的图像边缘检测算法[D];西安电子科技大学;2013年
4 杨昌盛;虹膜图像预处理及关键点提取方法的研究[D];中南大学;2009年
,本文编号:2308507
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2308507.html