微博用户个性化标签提取技术研究
[Abstract]:Weibo user tags can reflect the characteristics of users, user preferences and other information, and user tags to the user advertising recommendation, user clustering, user search and so on have a certain potential value. In this paper, the personality of Weibo user personalized tag contains two meanings, one is that the tag can reflect the personalized characteristics of the user, the other is that the tag itself contains the corresponding personalized features. Tags reflect the degree of personalized features of the user this paper compares with the tags extracted by the user manually. The personalized features contained in the tags refer to the further classification of the tags. Make the user's tags with common attributes, to facilitate the user to find, clustering, and so on. In this paper, we find out that there are three basic types of tags in user self-removal tags, which are called basic label, classified label, concern label, and then the characteristics of each basic type tag are studied respectively. According to the characteristics of each basic type label, the corresponding extraction method is designed, and then according to the relationship between the three basic type tags, how to integrate the three labels together to get a better response to the personalized features of the user tags. Therefore, in this paper, there are seven kinds of tag extraction methods involved in the process of user personalized tag extraction, three of which are based on tags, the other four are mixed tags between these three basic types of tags. Except for the existing TextRank algorithm which is used to extract the basic label in the basic type tag, the other six label extraction methods are all proposed in this paper. Through the final verification experiment, it is found that the mixed tag extraction effect of the three basic types of tags is the best. Therefore, the user tag extraction method studied in this paper has improved the effect of user personalized tag extraction. In addition, after further classifying the extracted user personalized tags, this paper makes Weibo user tags with more common information, which also brings certain benefits to user clustering, user classification, user search, and so on. Make user label's application scope more extensive.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP393.092;TP311.13
【相似文献】
相关期刊论文 前10条
1 王翠英;;标签的聚类分析研究[J];现代图书情报技术;2008年05期
2 林茜卡;傅秀芬;滕少华;李云;;协同标签系统的应用研究[J];暨南大学学报(自然科学与医学版);2009年01期
3 吴超;周波;;基于复杂网络的社会化标签分析[J];浙江大学学报(工学版);2010年11期
4 吴金成;曹娇;赵文栋;张磊;;标签集中式发布订阅机制性能分析[J];指挥控制与仿真;2010年06期
5 李晓燕;陈刚;寿黎但;董金祥;;一种面向协作标签系统的图片检索聚类方法[J];中国图象图形学报;2010年11期
6 袁柳;张龙波;;基于概率主题模型的标签预测[J];计算机科学;2011年07期
7 张斌;张引;高克宁;郭朋伟;孙达明;;融合关系与内容分析的社会标签推荐[J];软件学报;2012年03期
8 王永刚;严寒冰;许俊峰;胡建斌;陈钟;;垃圾标签的抵御方法研究[J];计算机研究与发展;2013年10期
9 汪祥;贾焰;周斌;陈儒华;韩毅;;基于交互关系的微博用户标签预测[J];计算机工程与科学;2013年10期
10 顾亦然;陈敏;;一种三部图网络中标签时间加权的推荐方法[J];计算机科学;2012年08期
相关会议论文 前6条
1 朱广飞;董超;王衡;汪国平;;照片标签的智能化管理[A];第四届和谐人机环境联合学术会议论文集[C];2008年
2 房冠南;袁彩霞;王小捷;李江;宋占江;;面向对话语料的标签推荐[A];中国计算语言学研究前沿进展(2009-2011)[C];2011年
3 梅放;林鸿飞;;基于社会化标签的移动音乐检索[A];第五届全国信息检索学术会议论文集[C];2009年
4 李静;林鸿飞;;基于用户情感标签的音乐检索算法[A];第六届全国信息检索学术会议论文集[C];2010年
5 骆雄武;万小军;杨建武;吴於茜;;基于后缀树的Web检索结果聚类标签生成方法[A];第四届全国信息检索与内容安全学术会议论文集(上)[C];2008年
6 王波;唐常杰;段磊;尹佳;左R,
本文编号:2309739
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2309739.html