基于人脸识别的矿井人员管理技术研究
[Abstract]:Our country is a big country of coal production, the management of coal mine personnel occupies a very important position in coal mine safety production. Therefore, it is of great significance to introduce the biometric method to identify the identity of mine personnel and to study the safety management system of mine personnel. Based on the application of face recognition technology in mine personnel management system, this paper analyzes the existing mine personnel management system, personnel identity accurate management technology, The feasibility of the application of face recognition technology and face recognition technology in mine personnel management. This paper introduces the commonly used face detection and recognition algorithms, and selects the face detection and recognition algorithm by analyzing the characteristics of mine face image. Aiming at the noise existing in image transmission, the median and homomorphic filtering method is used to pre-process the image, eliminate the isolated noise in image transmission, and enhance the contrast of image. The method of Canny edge detection is used to extract the contour features of mining cap and face, and face detection is carried out according to the contour features. Experiments show that the face detection algorithm is accurate and suitable for face detection of mine personnel. The principle and implementation of principal component analysis (PCA) are introduced in this paper. The feature extraction of face image is carried out by principal component analysis (PCA), which reduces the complexity of image processing and facilitates face recognition. The face recognition model of depth belief network is established, and the improved face recognition model is established by combining principal component analysis and depth belief network algorithm. The simulation experiment is carried out in ORL,FLW face database. The comparative analysis shows that the face recognition model based on PCA depth belief network has high recognition speed and recognition rate. The man-machine interface of mine personnel face recognition is designed, and the functions of face image collection, face detection, face recognition and human information display are realized. After testing, the principal component analysis (PCA) depth belief network face recognition algorithm is accurate for the tested face image detection and recognition, and complements the attendance management technology of mine personnel. It has important reference value in practical application. It has certain guiding significance for the further improvement of mine personnel safety management system.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD76;TP391.41
【参考文献】
相关期刊论文 前10条
1 ;《中国煤炭工业改革发展年度报告》(2016年度)发布[J];中国煤炭;2017年02期
2 ;我国煤炭消费量占世界一半——2015年全国产量达37.5亿吨[J];办公自动化;2017年01期
3 杨巨成;刘娜;房珊珊;谢迎;;基于深度学习的人脸识别方法研究综述[J];天津科技大学学报;2016年06期
4 胡月;沈永良;;深度学习模型与成对分类相结合的人脸识别新算法[J];黑龙江大学工程学报;2016年03期
5 曾璐;鲁海荣;罗璐;杨国亮;;基于RPCA与低秩投影的有遮挡人脸识别[J];计算机仿真;2015年10期
6 赵士伟;张如彩;王月明;张晖;;生物特征识别技术综述[J];中国安防;2015年07期
7 陈立潮;张秀琴;潘理虎;李博;;煤矿考勤系统中人脸识别算法的研究[J];工矿自动化;2015年04期
8 李晨鑫;;煤矿入井人员唯一性检测技术研究[J];工矿自动化;2014年11期
9 郭为民;;矿井人员管理系统入井检测技术分析[J];煤炭科技;2014年02期
10 冯玉涵;;BP神经网络在人脸识别中的应用研究[J];计算机光盘软件与应用;2014年02期
相关会议论文 前1条
1 严严;章毓晋;;基于一维相关滤波器的类依赖特征分析人脸识别[A];第十四届全国图象图形学学术会议论文集[C];2008年
相关重要报纸文章 前1条
1 赵明;;汉柏科技进军人脸识别领域[N];中国计算机报;2017年
相关硕士学位论文 前2条
1 张百运;矿用数字网络广播系统研究[D];西安科技大学;2016年
2 雍峰;面向企业管理的云计算服务模式分析和应用[D];天津大学;2014年
,本文编号:2312165
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2312165.html