当前位置:主页 > 科技论文 > 软件论文 >

三维散乱点云的特征提取方法研究

发布时间:2018-11-06 19:04
【摘要】:随着三维测量技术的不断发展,通过数字扫描设备能够有效的获取现实世界中物理物体的高精度表面模型,并成为获取3D点云数据的主要手段。三维点云模型已经被广泛应用于模式识别、三维重建、模型分割等领域,而特征提取作为三维点云模型处理的底层技术成为图像领域的研究热点。本文在总结特征提取技术国内外研究现状的基础上,将马尔科夫随机场(Markov Random Field,MRF)模型应用在该领域,分别从建立典型的MRF模型和提取显著特征点建立MRF模型两方面给出研究思路和求解框架。本文研究内容主要包括:1.提出了基于马尔科夫随机场的散乱点云全局特征提取算法。该算法基于经典的MRF模型,通过观察点云分布的直方图拟合高斯分布建立模型,根据贝叶斯估计将先验问题转化为最大后验概率的求解,进一步推导为随机场最小能量的求解,归约简化得到目标函数,求解该函数并提取特征点。该算法针对传统算法存在大量的人工调参及阈值设置的问题,灵活的融合了典型MRF模型的自适应性,有效避免了传统算法的弊端,并提高了算法的自适应性和时间效率。2.提出了基于显著特征点的散乱点云特征提取算法。该算法的核心思想是对典型的MRF模型进行改进,和前面算法的主要区别是对随机场模型的建立方法:通过构造点云的显著度函数计算散乱点的显著度,结合点间测地距和显著度构建Reeb图,提取显著特征点,根据点到显著特征点以及中心点的距离求MRF随机场的联合密度函数。该算法继承了自适应性优点,同时也避免了上面算法存在初始阈值的设置及点云数据高斯拟合的问题,使点云特征提取完全跳脱出传统曲面曲线拟合和特征参数设置的思维禁锢。3.这两个特征提取算法主要应用于秦兵马俑碎片的虚拟复原项目中。实验结果表明本文算法均能够有效提取出兵俑的特征,相对于传统算法具有自适应性和高效性,为后续兵马俑虚拟复原工作奠定了基础。
[Abstract]:With the development of 3D measurement technology, the high precision surface model of physical objects in the real world can be obtained effectively by digital scanning equipment, and it becomes the main means to obtain 3D point cloud data. 3D point cloud model has been widely used in pattern recognition, 3D reconstruction, model segmentation and other fields. Feature extraction as the bottom technology of 3D point cloud model processing has become the focus of image research. On the basis of summarizing the research status of feature extraction technology at home and abroad, this paper applies Markov Random Field (Markov Random Field,MRF) model to this field. The research ideas and solution framework are given from two aspects: establishing typical MRF model and extracting prominent feature points to establish MRF model. The main contents of this paper are as follows: 1. A global feature extraction algorithm for scattered point clouds based on Markov random field is proposed. Based on the classical MRF model, the model is established by fitting Gao Si distribution with histogram of observation point cloud distribution. According to Bayesian estimation, the priori problem is transformed into the solution of the maximum posterior probability, and the solution of the minimum energy of the random field is further deduced. The objective function is obtained by reduction, the function is solved and the feature points are extracted. Aiming at the problems of manual parameter adjustment and threshold setting in traditional algorithms, the algorithm combines the self-adaptability of typical MRF model flexibly, effectively avoids the disadvantages of traditional algorithms, and improves the self-adaptability and time efficiency of the algorithm. 2. An algorithm for feature extraction of scattered point clouds based on salient feature points is proposed. The core idea of this algorithm is to improve the typical MRF model. The main difference from the previous algorithm is the method of establishing random field model: the salience of scattered points is calculated by constructing the salience function of point cloud. The Reeb map was constructed by geodesic distance and saliency between the combined points, and the joint density function of MRF random field was obtained according to the distance from the point to the significant feature point and the distance from the center point to the significant feature point. The algorithm inherits the advantages of self-adaptability and avoids the problem of initial threshold setting and point cloud data Gao Si fitting. The point cloud feature extraction completely jumps out of the traditional curve fitting and feature parameter setting. 3. 3. These two feature extraction algorithms are mainly used in the virtual restoration project of Qin Terracotta Warriors and horses fragments. The experimental results show that the proposed algorithm can effectively extract the features of the terracotta warriors, and is more adaptive and efficient than the traditional algorithms, which lays a foundation for the subsequent virtual restoration of the terracotta warriors.
【学位授予单位】:西北大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41

【相似文献】

相关期刊论文 前10条

1 孙殿柱;朱昌志;李延瑞;;散乱点云边界特征快速提取算法[J];山东大学学报(工学版);2009年01期

2 梁新合;梁晋;郭成;曹巨名;王永信;;散乱点云的补偿滤波[J];西安交通大学学报;2011年11期

3 孙殿柱;朱昌志;李延瑞;田中朝;;散乱点云局部型面参考数据的快速查询算法[J];农业机械学报;2009年05期

4 黄文明;彭希为;温佩芝;吴晓军;;保留几何特征的散乱点云简化方法[J];计算机工程与应用;2009年28期

5 孙殿柱;朱昌志;范志先;李延瑞;;基于型面特征的三维散乱点云精简算法[J];中国机械工程;2009年23期

6 孙永伟;孙殿柱;朱昌志;朱宗伟;;散乱点云切片数据快速获取与优化[J];哈尔滨工程大学学报;2010年11期

7 周学礼;万旺根;;心内膜散乱点云边界点检测算法研究[J];计算机应用研究;2012年10期

8 王伟;唐民丽;吴恒玉;;大规模散乱点云数据的曲率估算及计算机实现[J];苏州市职业大学学报;2011年03期

9 赵灿;汤春瑞;刘丹丹;;基于表面波变换的散乱点云去噪方法[J];组合机床与自动化加工技术;2009年02期

10 倪敏敏;何雪明;薛莹;邓杨;;散乱点云的拓扑结构重建算法的研究[J];机械设计与制造;2010年08期

相关会议论文 前10条

1 孙殿柱;孙肖霞;李延瑞;范志先;;散乱点云内外边界的自动提取技术[A];全国先进制造技术高层论坛暨制造业自动化、信息化技术研讨会论文集[C];2005年

2 尚修刚;蒋慰孙;;模糊特征提取新算法[A];1997中国控制与决策学术年会论文集[C];1997年

3 潘荣江;孟祥旭;杨承磊;王锐;;旋转体的几何特征提取方法[A];第一届建立和谐人机环境联合学术会议(HHME2005)论文集[C];2005年

4 薛燕;李建良;朱学芳;;人脸识别中特征提取的一种改进方法[A];第十三届全国图象图形学学术会议论文集[C];2006年

5 杜栓平;曹正良;;时间—频率域特征提取及其应用[A];2005年全国水声学学术会议论文集[C];2005年

6 黄先锋;韩传久;陈旭;周剑军;;运动目标的分割与特征提取[A];全国第二届信号处理与应用学术会议专刊[C];2008年

7 魏明果;;方言比较的特征提取与矩阵分析[A];2009系统仿真技术及其应用学术会议论文集[C];2009年

8 林土胜;赖声礼;;视网膜血管特征提取的拆支跟踪法[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

9 秦建玲;李军;;基于核的主成分分析的特征提取方法与样本筛选[A];2005年中国机械工程学会年会论文集[C];2005年

10 刘红;陈光,

本文编号:2315188


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2315188.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d4dc3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com