当前位置:主页 > 科技论文 > 软件论文 >

融合对比度与背景先验的显著目标检测算法

发布时间:2018-11-09 10:58
【摘要】:针对已有的显著检测算法对背景复杂的图像检测效果较差的问题,提出融合对比度与背景先验的显著目标检测算法.首先将图像划分为感知均匀的像素块,再根据对比度先验定义图像的显著边缘、像素块的全局对比度及颜色相似像素块的空间分布,得到任一像素块与前景的相关性;然后根据背景先验将图像边界像素块定义为伪背景区域,通过计算像素块与伪背景区域的相似度得到像素块与背景的相关性;最后通过能量优化函数结合像素块与前景、背景的相关性,得到该像素块的显著值.实验结果表明,与同类算法相比,该算法能更好地使显著目标整体高亮,抑制背景噪声,得到较符合视觉感知的显著图.
[Abstract]:Aiming at the problem of poor performance of existing salient detection algorithms for images with complex background, a significant target detection algorithm based on fusion contrast and background priori is proposed. Firstly, the image is divided into perceptual uniform pixel blocks, then the significant edges of the image, the global contrast of the pixel blocks and the spatial distribution of the color similar pixel blocks are defined according to the contrast prior, and the correlation between any pixel block and the foreground is obtained. Then the image boundary pixel block is defined as pseudo background region according to background priori, and the correlation between pixel block and background is obtained by calculating the similarity between pixel block and pseudo background region. Finally, the significant value of the pixel block is obtained by combining the energy optimization function with the correlation between the pixel block and the foreground and background. The experimental results show that compared with the similar algorithms, the proposed algorithm can better highlight the whole salient target, suppress the background noise, and obtain the salient image which accords with the visual perception.
【作者单位】: 上海交通大学计算机科学与工程系;东南大学信息科学与工程学院;中兴通讯股份有限公司云计算及IT研究院;
【基金】:国家“九七三”重点基础研究发展计划项目(2011CB302203) 国家自然科学基金(61133009;61502220;U1304616)
【分类号】:TP391.41

【相似文献】

相关期刊论文 前10条

1 张桂林,熊艳,曹伟,李强;一种评价自动目标检测算法性能的方法[J];华中理工大学学报(社会科学版);1994年05期

2 秦剑;陈钱;钱惟贤;;基于背景分类的弱小目标检测算法[J];光电工程;2011年01期

3 蒋建国;吴晖;齐美彬;张莉;;摄像机旋转运动下的快速目标检测算法[J];图学学报;2012年03期

4 逯鹏;张姗姗;刘驰;黄石磊;汤玉合;;基于稀疏超完备表示的目标检测算法[J];仪器仪表学报;2013年06期

5 李大辉;金涛;;弱小目标检测算法的设计与分析[J];中国科技信息;2013年16期

6 张明艳;许钢;孟樱;;基于时空特性的运动目标检测算法研究[J];安徽工程大学学报;2013年04期

7 徐振海,王雪松,肖顺平,庄钊文;基于模糊融合的目标检测算法研究[J];国防科技大学学报;2000年04期

8 李维雅,董能力,金钢,李正周;弱小目标检测算法性能评价的回归分析方法[J];光电工程;2005年02期

9 高陈强;田金文;王鹏;;基于时域特性分析的红外运动小目标检测算法[J];红外与激光工程;2008年05期

10 曾脉;左志宏;常晓夫;何煊;;一种准确而快速的运动目标检测算法[J];成都信息工程学院学报;2008年04期

相关会议论文 前10条

1 高飞;蒋建国;安红新;齐美彬;;一种快速运动目标检测算法[A];全国第22届计算机技术与应用学术会议(CACIS·2011)暨全国第3届安全关键技术与应用(SCA·2011)学术会议论文摘要集[C];2011年

2 孙瑾秋;张艳宁;姜磊;王敏;;基于变换域特征的星空背景弱小目标检测算法[A];第八届全国信号与信息处理联合学术会议论文集[C];2009年

3 邓宇;陈孝威;;综合利用时空信息的运动目标检测算法[A];第二届和谐人机环境联合学术会议(HHME2006)——第15届中国多媒体学术会议(NCMT'06)论文集[C];2006年

4 袁辉;孙卓;李德民;魏颖;;基于小波多尺度互能量交叉融合滤波的弱小目标检测算法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年

5 顾静良;万敏;张卫;郑捷;;低对比度弱小目标检测算法[A];中国工程物理研究院科技年报(2005)[C];2005年

6 黄龚;郑锦;刘养科;;摄像机水平巡扫时的运动目标检测算法[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年

7 张国华;;一种基于导引头稳定平台结构的目标检测算法[A];第九届全国光电技术学术交流会论文集(下册)[C];2010年

8 王正;刘瑞华;;基于PTZ摄像机的运动目标检测算法[A];全国第一届嵌入式技术联合学术会议论文集[C];2006年

9 王彪;王成儒;王芬芬;;一种改进的运动目标检测算法[A];计算机技术与应用进展·2007——全国第18届计算机技术与应用(CACIS)学术会议论文集[C];2007年

10 刘琳;顾国华;钱惟贤;陈钱;徐富元;;目标检测算法的研究以及SRIO协议在目标检测的应用[A];第八届华东三省一市真空学术交流会论文集[C];2013年

相关博士学位论文 前5条

1 王海丰;基于机器视觉的剖竹机加工目标检测算法研究[D];东北林业大学;2015年

2 王俊强;图像中人体目标检测算法研究[D];北京邮电大学;2012年

3 郭明玮;基于视觉记忆的目标检测算法:一个特征学习与特征联想的过程[D];中国科学技术大学;2014年

4 臧风妮;智能视频监控中海面舰船目标检测算法研究[D];中国海洋大学;2014年

5 陈伟;基于PSO的复杂工业环境视觉目标检测算法应用研究[D];武汉科技大学;2008年

相关硕士学位论文 前10条

1 刘恒建;基于FPGA+DSP的运动目标检测系统的设计与实现[D];南京理工大学;2015年

2 贾建英;视频序列中运动目标检测算法研究[D];长安大学;2015年

3 周亚运;基于TMS320DM642平台的红外运动目标检测算法设计[D];南京理工大学;2015年

4 姚丹;基于多光谱信息融合的弱小运动目标检测技术研究[D];哈尔滨工业大学;2015年

5 刘培培;基于区域特征的运动目标检测算法的研究与开发[D];广西大学;2015年

6 崔璇;天空背景下红外小目标检测算法研究[D];陕西师范大学;2015年

7 李兆军;沿迹干涉运动目标检测算法研究[D];中国科学院研究生院(电子学研究所);2006年

8 张鹤;运动目标检测算法研究[D];武汉科技大学;2011年

9 王明智;嵌入式目标检测算法的研究与实现[D];大连理工大学;2012年

10 黄素茵;基于视频监控运动目标检测算法研究[D];华南理工大学;2013年



本文编号:2320197

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2320197.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7f7c4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com