基于Android的玉米病虫害机器视觉诊断系统研究
发布时间:2018-11-15 16:05
【摘要】:为了使农业智能诊断系统更加廉价、便捷,有效地为普通农户服务,提出了一种基于Android手机的农业病虫害智能诊断系统。该系统使用Android智能手机对玉米病虫害部分进行图片拍摄,并将图像利用无线网上传至Web服务器,利用分割和匹配算法对病虫害部分进行智能化分析,最终将结果传输到手机用户端。为实现图像匹配的特征点提取,采用高斯差分的方法对图像进行分割和精确定位,使用聚类算法对匹配效果进行优化,并利用特征点的无限逼近,完成病虫害图像的匹配,从而诊断病虫害的类型。上传后的图像和Web服务器的规则库的图像进行匹配后可以生成病虫害的匹配结果信息,该信息可以通过Android智能系统接收,最终反馈给农户的手机客户端。通过测试发现:玉米病虫害诊断系统可从多幅图像里有效地对病虫害类型进行匹配,匹配成功率较高,系统的稳定性较好,具有很好的推广前景。
[Abstract]:In order to make the agricultural intelligent diagnosis system cheaper, more convenient and more effective for ordinary farmers, an intelligent diagnosis system of agricultural diseases and insect pests based on Android mobile phone was proposed. The system uses Android smart phone to take pictures of maize pests and diseases, uploads the images to Web server using wireless network, and uses segmentation and matching algorithm to analyze the pests and diseases intelligently. Finally, the results will be transmitted to the mobile phone client. In order to extract the feature points of image matching, Gao Si difference method is used to segment and locate the image accurately, the clustering algorithm is used to optimize the matching effect, and the infinite approximation of feature points is used to complete the image matching of diseases and insect pests. To diagnose the types of pests and diseases. After matching the uploaded image with the image of the rule base of the Web server, the matching result information of disease and insect pests can be generated. The information can be received through the Android intelligent system, and finally fed back to the mobile phone client of the farmer. It is found that the diagnosis system of maize diseases and insect pests can effectively match the types of diseases and insect pests from multiple images, the matching success rate is high, the stability of the system is good, and the system has a good prospect of popularization.
【作者单位】: 河南工业职业技术学院;焦作师范高等专科学校计算机与信息工程学院;
【基金】:河南省科技攻关项目(152102110161)
【分类号】:S435.13;TP391.41
[Abstract]:In order to make the agricultural intelligent diagnosis system cheaper, more convenient and more effective for ordinary farmers, an intelligent diagnosis system of agricultural diseases and insect pests based on Android mobile phone was proposed. The system uses Android smart phone to take pictures of maize pests and diseases, uploads the images to Web server using wireless network, and uses segmentation and matching algorithm to analyze the pests and diseases intelligently. Finally, the results will be transmitted to the mobile phone client. In order to extract the feature points of image matching, Gao Si difference method is used to segment and locate the image accurately, the clustering algorithm is used to optimize the matching effect, and the infinite approximation of feature points is used to complete the image matching of diseases and insect pests. To diagnose the types of pests and diseases. After matching the uploaded image with the image of the rule base of the Web server, the matching result information of disease and insect pests can be generated. The information can be received through the Android intelligent system, and finally fed back to the mobile phone client of the farmer. It is found that the diagnosis system of maize diseases and insect pests can effectively match the types of diseases and insect pests from multiple images, the matching success rate is high, the stability of the system is good, and the system has a good prospect of popularization.
【作者单位】: 河南工业职业技术学院;焦作师范高等专科学校计算机与信息工程学院;
【基金】:河南省科技攻关项目(152102110161)
【分类号】:S435.13;TP391.41
【相似文献】
相关期刊论文 前10条
1 高科;美清;青青;冰琪;兰花;红叶;玉洁;;玉米病虫害[J];麦类文摘(种业导报);2006年03期
2 ;2010年黑龙江省玉米病虫害将重于2009年[J];黑龙江农业科学;2010年07期
3 史明怀;;玉米病虫害的发生与防治探索[J];企业导报;2012年05期
4 杜明辉;陈焕容;刘丽敏;;常见玉米病虫害及防治[J];现代化农业;2012年07期
5 韩美;;2013玉米病虫害仍不可小视[J];种子科技;2013年02期
6 张云峰;;对玉米病虫害的种类及其防治措施的探讨[J];农民致富之友;2013年07期
7 贾莉;;玉米病虫害的绿色防控[J];中国农业信息;2013年15期
8 赵影;;阜南县玉米病虫害专业化统防统治技术探讨[J];农民致富之友;2013年18期
9 ;怎样防治春种玉米病虫害?[J];计划与市场探索;1999年02期
10 岳润庆;;阳泉市玉米病虫害发生概况及防治措施[J];农民致富之友;2014年02期
相关会议论文 前4条
1 赵丹丽;黄岳仁;于广文;;浅析岫岩地区玉米病虫害趋重的原因及防治对策[A];辽宁省昆虫学会2009年学术年会论文集[C];2010年
2 张启勇;周群芳;于淑琴;;安徽省玉米病虫害专业化统防统治工作现状与发展思考[A];安徽省昆虫学会、安徽省植物病理学会2012年学术年会论文集[C];2012年
3 黄e,
本文编号:2333771
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2333771.html