基于灰色关联分析的灰度图像边缘检测研究
[Abstract]:Based on the theory that the gray correlation analysis can detect the edge, this paper studies the principle of the traditional edge detection algorithm based on the grey correlation analysis, and improves the shortcomings of the traditional algorithm, such as poor anti-noise performance and strong subjectivity of threshold setting. This paper first introduces the background knowledge of edge detection, the theoretical basis and research progress of traditional edge detection based on grey correlation analysis. Secondly, the defects of the traditional algorithm are improved. The median filter is added to the detection image for smoothing filtering to enhance the anti-noise performance of the algorithm. In this paper, an adaptive differential equation for calculating threshold is proposed based on human visual characteristics. The equation is composed of the average gray value of 3 脳 3 neighborhood around the pixels to be detected in the image, which overcomes the subjective disadvantage of the traditional threshold setting algorithm. The improved algorithm is simulated and analyzed. By dealing with the eight neighborhood region points of the edge points, the phenomenon of more pseudo-edge of the edge extracted by the improved threshold is improved. The experimental results show that the improved algorithm can suppress the salt and pepper noise with high concentration, and the edge extracted by the adaptive threshold is less than the traditional algorithm. Finally, the improved algorithm is compared with the classical differential operator in the aspects of anti-noise performance, location error, linear connection degree, edge continuity and so on. The experimental data show that the edge image detected by the improved algorithm is more complete, the edge is continuous, the edge is finer, and the localization accuracy is higher than the classical algorithm, for the image with high concentration of salt and pepper noise, The advantages of the classical algorithm are also obtained. The applicability of the improved algorithm to different types of images and the performance of the algorithm time in different gray-scale images are discussed. The results show that the proposed algorithm has strong applicability.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 党耀国;王俊杰;康文芳;;灰色预测技术研究进展综述[J];上海电机学院学报;2015年01期
2 文永革;何红洲;李海洋;;一种改进的Roberts和灰色关联分析的边缘检测算法[J];图学学报;2014年04期
3 周志刚;桑农;万立;陈铁灵;;利用灰色理论构造统计量进行图像边缘检测[J];系统工程与电子技术;2013年05期
4 王树文;张长利;;基于图像处理技术的黄瓜叶片病害识别诊断系统研究[J];东北农业大学学报;2012年05期
5 薛文格;周万府;;基于Prewitt算子和邓氏关联度的图像边缘检测算法[J];楚雄师范学院学报;2011年09期
6 桂预风;吴建平;;基于Laplacian算子和灰色关联度的图像边缘检测方法[J];汕头大学学报(自然科学版);2011年02期
7 鲁胜强;刘瑞玲;;灰色关联度和Prewitt算子相结合的边缘检测算法[J];福建电脑;2011年04期
8 齐英剑;李青;吴正朋;;基于灰色相对关联度的图像边缘检测算法[J];中国传媒大学学报(自然科学版);2010年03期
9 康牧;王宝树;;自适应Kirsch边缘检测算法[J];华中科技大学学报(自然科学版);2009年04期
10 钟都都;闫杰;;基于灰色关联分析和Canny算子的图像边缘提取算法[J];计算机工程与应用;2006年28期
相关博士学位论文 前1条
1 磨少清;边缘检测及其评价方法的研究[D];天津大学;2011年
相关硕士学位论文 前1条
1 李雪;灰度图像边缘检测算法的性能评价[D];沈阳工业大学;2007年
,本文编号:2335124
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2335124.html