飞行态势感知中目标分群方法研究
[Abstract]:As the focus and difficulty of situational awareness, target clustering is an important basis to determine the relationship between target entities and the basis of the later data fusion system. In this paper, the algorithm of target clustering is studied, and the improvement and realization of the algorithm are given. The main work of this paper is as follows: firstly, on the basis of in-depth analysis of the relationship among data fusion, situation assessment and situational awareness according to hierarchical structure, this paper points out the key and difficult problems of target clustering in situational awareness. The existing target clustering methods are studied, and the hierarchical clustering algorithm, which is one of the target clustering algorithms, is analyzed. Secondly, the characteristics and functions of classical hierarchical clustering algorithm are analyzed. The advantages and disadvantages of Rock algorithm, Cure algorithm and Chameleon algorithm in similarity calculation are analyzed. The Chameleon algorithm, which has obvious advantages in similarity calculation, is analyzed. The basic concept, mathematical model and implementation flow are studied in detail. The limitations of Chameleon algorithm are found through theoretical analysis and simulation experiments. Finally, starting with the limitation of the Chameleon algorithm, according to the two-stage flow of the algorithm, the DPC algorithm based on the peak density is introduced into the first stage of the Chameleon algorithm, and the discipline of community structure is introduced into the second stage of the Chameleon algorithm, and the two stages of the algorithm are improved. An improved Chameleon algorithm is proposed to solve the problem of target clustering. For the improved Chameleon algorithm, the algorithm model and algorithm flow are introduced in detail, and the specific simulation experiments are given. Experimental results show that the improved Chameleon algorithm is less sensitive to input parameters than the traditional Chameleon algorithm and can deal with multi-shape data sets.
【学位授予单位】:中国民航大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:E926.4;TP301.6
【参考文献】
相关期刊论文 前10条
1 宋建辉;张俊;刘砚菊;于洋;;基于LBP-PCA的多传感器目标识别算法[J];火力与指挥控制;2017年02期
2 WANG Shuliang;WANG Dakui;LI Caoyuan;LI Yan;DING Gangyi;;Clustering by Fast Search and Find of Density Peaks with Data Field[J];Chinese Journal of Electronics;2016年03期
3 宋翌曦;;人因工程在航空地面保障安全方面的应用[J];现代工业经济和信息化;2016年04期
4 魏小凤;胡继承;罗永恩;;基于超图模型的软件模块自动划分[J];计算机工程;2016年01期
5 朱烨行;李艳玲;杨献文;;一种改进CHAMELEON算法的聚类算法COCK[J];微电子学与计算机;2015年12期
6 陈晋音;何辉豪;;基于密度的聚类中心自动确定的混合属性数据聚类算法研究[J];自动化学报;2015年10期
7 薛文娟;刘培玉;刘栋;;引入共享近邻加权图的Chameleon算法[J];计算机应用;2012年10期
8 毛小燕;;网络结点度相关性测度及其稳定性分析[J];计算机应用与软件;2012年04期
9 席荣荣;云晓春;金舒原;张永铮;;网络安全态势感知研究综述[J];计算机应用;2012年01期
10 孙晓博;廖桂平;;基于新的相似性度量的加权粗糙聚类算法[J];计算机工程与科学;2011年12期
相关博士学位论文 前3条
1 李峗;基于复杂网络社区探测的作战体系目标分群方法研究[D];国防科学技术大学;2013年
2 杜楠;复杂网络中社区结构发现算法研究及建模[D];北京邮电大学;2009年
3 李伟生;信息融合系统中态势估计技术研究[D];西安电子科技大学;2004年
相关硕士学位论文 前6条
1 吴栻玲;结合AP算法的Chameleon聚类算法研究[D];东北师范大学;2014年
2 董高峰;基于One-class SVM的多球体文本聚类算法研究[D];重庆大学;2013年
3 陈华;机载多传感器数据融合态势评估关键技术研究[D];电子科技大学;2012年
4 张娜;复杂网络社区结构划分算法研究[D];大连理工大学;2009年
5 瞿俊;基于重叠度的层次聚类算法研究及其应用[D];厦门大学;2007年
6 程岳;数据融合中态势估计技术研究[D];西安电子科技大学;2002年
,本文编号:2335259
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2335259.html