对称局部保持的半监督维数约简算法
发布时间:2018-11-16 19:02
【摘要】:针对自然界较多图像具有对称的特点以及数据分布大多呈一定的流形结构情况,提出了一种对称局部保持的半监督维数约减(SLPSDR)算法.该算法使用矩阵定义维数约减映射矩阵元素之间的关系,使图像中对称的像素点对应的映射矩阵的值之间的差别最小;同时为了利用无标签训练样本保持数据的流形结构,要求低维空间中每个点的邻域关系与高维空间中的邻域关系相似.在CMU PIE、Extend Yale B、ORL、AR人脸数据库上的实验结果表明,图像数据明显的对称特点使得SLPSDR算法优于其他对比的维数约减算法.
[Abstract]:In view of the symmetry of many images in nature and the fact that most of the data distribution is manifold structure, a semi-supervised dimension reduction (SLPSDR) algorithm with symmetric local preservation is proposed. In this algorithm, the matrix is used to define the relationship between the elements of the dimensionality reduction mapping matrix, and the difference between the values of the mapping matrix corresponding to the symmetric pixel points in the image is minimized. At the same time, in order to use unlabeled training samples to maintain the manifold structure of data, it is required that the neighborhood relationship of each point in low-dimensional space is similar to that in high-dimensional space. The experimental results on CMU PIE,Extend Yale ORL AR face database show that the obvious symmetry of the image data makes the SLPSDR algorithm superior to other contrast dimension reduction algorithms.
【作者单位】: 广东司法警官职业学院信息管理系;
【基金】:国家自然科学基金资助项目(61402118)~~
【分类号】:TP391.41
本文编号:2336374
[Abstract]:In view of the symmetry of many images in nature and the fact that most of the data distribution is manifold structure, a semi-supervised dimension reduction (SLPSDR) algorithm with symmetric local preservation is proposed. In this algorithm, the matrix is used to define the relationship between the elements of the dimensionality reduction mapping matrix, and the difference between the values of the mapping matrix corresponding to the symmetric pixel points in the image is minimized. At the same time, in order to use unlabeled training samples to maintain the manifold structure of data, it is required that the neighborhood relationship of each point in low-dimensional space is similar to that in high-dimensional space. The experimental results on CMU PIE,Extend Yale ORL AR face database show that the obvious symmetry of the image data makes the SLPSDR algorithm superior to other contrast dimension reduction algorithms.
【作者单位】: 广东司法警官职业学院信息管理系;
【基金】:国家自然科学基金资助项目(61402118)~~
【分类号】:TP391.41
【相似文献】
相关期刊论文 前4条
1 郑诚,欧阳为民,蔡庆生;一种有效的的时间序列维数约简方法[J];小型微型计算机系统;2002年11期
2 刘丽娜;于治楼;张化祥;;针对不平衡数据集的维数约简方法[J];信息技术与信息化;2011年05期
3 陈威;;几种维数约简方法在人脸识别中的比较研究[J];甘肃联合大学学报(自然科学版);2011年04期
4 ;[J];;年期
相关博士学位论文 前1条
1 殷飞;基于稀疏学习的图像维数约简和目标识别方法研究[D];西安电子科技大学;2014年
相关硕士学位论文 前1条
1 许新忠;基于维数约简的流形可视化研究[D];中国民航大学;2014年
,本文编号:2336374
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2336374.html