基于统计量的图像去雾算法研究
[Abstract]:Image processing aims to highlight some details in the image for visual observation and computer analysis. Under the condition of haze, the visibility of outdoor images is restricted and the contrast of the images is decreased due to the action of atmospheric particles. In order to solve the problem of image quality degradation, most of the current processing schemes are based on image enhancement and image restoration de-fog algorithm, image enhancement algorithm by improving the contrast of the image to achieve clarity effect; Based on the foggy image imaging model, the atmospheric scattering mechanism is modeled to restore the possible clear image without fog. Based on the fog image formation model and degradation mechanism, this paper explores the key techniques and implementation methods of image de-fogging, and gives the prior statistical evidence of dark channel and the improved non-local de-fogging algorithm. The main work of this paper is as follows: (1) the dark channel priori is a statistical rule based on the clear outdoor fog-free images, that is, there are at least one pixel with low intensity of color channel in the non-sky region of most outdoor fog-free images. In this paper, we assume that the three channels are independent of each other, and the scene points are independent with other pixel points in the field. The RGB value of the color fog free image is considered as a statistical variable. Assuming that these three variables are all subject to the Beta distribution, the density function and distribution function of the variables are given after the minimum filtering of two times (the RGB three-channel is small, then the RGB is small in a neighborhood). In order to verify the validity of dark channel priori. (2) the existing image de-fogging methods can be divided into local and non-local categories according to the different prior information used. Berman et al., based on the non-local clustering characteristics of clear images in RGB space, The geometric representation of a fog line (Haze-Line) for each color class of a fog image is constructed. The maximum radiative coordinates of the fog line (LRC:Largest Radial Coordinate) are the key to estimate the initial transmittance. In this paper, an unbiased estimate of LRC is given from the point of view of statistics. The experimental results show that the proposed method can obtain at least the same results as the original method.
【学位授予单位】:宁夏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 孙晓晓;杨峰;;基于小波变换融合技术的去雾方法[J];山东师范大学学报(自然科学版);2016年02期
2 王质春;俞文燕;;单幅雾霾天气交通监控图像去雾处理技术[J];交通运输研究;2016年02期
3 毕笃彦;葛渊;李权合;任志河;南栋;陈剑鹏;;单幅图像去雾方法研究[J];空军工程大学学报(自然科学版);2013年06期
4 李利荣;汪蒙;;一种高效的图像增强去雾算法[J];湖北工业大学学报;2013年05期
5 刘佳嘉;周超;;一种基于色彩恒常理论的薄雾图像增强方法[J];科学技术与工程;2013年13期
6 马云飞;何文章;;基于小波变换的雾天图像增强方法[J];计算机应用与软件;2011年02期
7 黄黎红;;一种基于单尺度Retinex的雾天降质图像增强新算法[J];应用光学;2010年05期
8 张丽;杨安洪;李新涛;王建荣;;海岛区域影像薄雾处理模型与实现[J];测绘科学技术学报;2010年04期
9 汪荣贵;杨万挺;方帅;吴昊;;基于小波域信息融合的MSR改进算法[J];中国图象图形学报;2010年07期
10 叶秋果;宗景春;李钏;滕惠忠;;基于同态滤波的遥感影像去云雾处理[J];海洋测绘;2009年03期
相关博士学位论文 前3条
1 赵宏宇;雾天图像清晰化技术的研究[D];北京工业大学;2015年
2 胡学友;雾天降质图像的增强复原算法研究[D];安徽大学;2011年
3 翟艺书;雾天降质图像的清晰化技术研究[D];大连海事大学;2008年
相关硕士学位论文 前7条
1 刘超;Curvelet变换在图像去雾处理中的应用研究[D];云南大学;2016年
2 贾冬雪;图像去雾算法的研究与应用[D];沈阳工业大学;2015年
3 代永珍;单幅有雾图像去雾算法研究[D];国防科学技术大学;2014年
4 刘明;基于MSR改进算法的图像和视频去雾研究[D];安徽大学;2014年
5 王一涵;雾天图像增强方法研究[D];西安电子科技大学;2012年
6 刘建明;基于PC的雾天图像和视频的清晰化算法研究与实现[D];上海交通大学;2009年
7 祝培;恶劣天气环境下图像的清晰化[D];西安理工大学;2004年
,本文编号:2347391
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2347391.html