基于SIFT特征的图像配准与拼接技术研究
[Abstract]:Image mosaic and fusion technology is a hot research point in the field of image processing and computer vision. In recent years, it has been widely used in national defense security, robot vision, video surveillance, panoramic image generation, medical image processing, remote sensing. Underwater exploration, video compression and retrieval, 3D virtual scene construction and other important areas. Among them, the registration rate, the time consuming and the quality of image fusion are all indicators to evaluate the quality of a stitching method. The feature-based image stitching and fusion method is highly praised by researchers because of its high registration quality and is not easy to be affected by the change of scale and other factors. In this paper, based on the existing feature-based image registration and stitching techniques, each step of image registration and stitching fusion is refined and improved, and good registration and stitching results are obtained. The main work is as follows: (1) the advantages and disadvantages of various lens distortion correction algorithms are analyzed and compared. According to the actual demand, the camera parameters are calibrated and corrected by using Zhang Zhengyou calibration method or Ilya Krylov model. (2) various image enhancement preprocessing methods are studied, and an image pyramid enhancement algorithm is proposed. The image registration rate is improved, and the average registration rate increases by 14.3% under the condition of poor illumination. (3) the image registration based on SIFT algorithm is studied, and the descriptor of SIFT feature is improved. The average speed of image registration is increased by 2 times. (4) the image fusion methods are analyzed and compared, and the original weighted average method is improved to improve the visual effect of the fusion results. Experimental results show that the proposed method can be effectively used in image mosaic and video mosaic in various fields.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 卢官明;陈浩;肖鲁宁;苏昊;钟锐;;全景视图泊车辅助系统中的多视点视频拼接[J];南京邮电大学学报(自然科学版);2016年03期
2 徐燕丽;;一种鱼眼镜头畸变图像实时校正算法[J];信息通信;2016年06期
3 刘向南;马纯永;陈璐;陈戈;;基于三维场景出图的拼接制作2.5维地图算法[J];计算机应用;2015年S1期
4 魏利胜;周圣文;张平改;孙驷洲;;基于双经度模型的鱼眼图像畸变矫正方法[J];仪器仪表学报;2015年02期
5 陈晓;唐诗华;;基于Matlab的图像融合方法及性能评价[J];地理空间信息;2014年06期
6 肖进胜;饶天宇;贾茜;宋金钟;易本顺;;基于图切割的拉普拉斯金字塔图像融合算法[J];光电子.激光;2014年07期
7 姜柏军;钟明霞;;改进的直方图均衡化算法在图像增强中的应用[J];激光与红外;2014年06期
8 戴霞;李辉;杨红雨;张军;;基于虚拟图像金字塔序列融合的快速图像增强算法[J];计算机学报;2014年03期
9 赵娟;孙澎涛;吴粉侠;冯延琴;;基于像素级的图像融合[J];长春工程学院学报(自然科学版);2011年02期
10 张恒,雷志辉,丁晓华;一种改进的中值滤波算法[J];中国图象图形学报;2004年04期
相关硕士学位论文 前3条
1 桂辉;安防监控中多相机图像拼接相关问题的研究[D];浙江工业大学;2015年
2 杨瑞阳;基于SURF算法的医学显微图像拼接研究[D];兰州大学;2014年
3 赵彬;基于压缩域的视频配准[D];山东大学;2008年
,本文编号:2392161
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2392161.html