基于机器视觉的航空电连接器插针检测技术研究
[Abstract]:Avionics connectors are widely used in all kinds of instruments and spaceflight system engineering. They play the role of signal transmission and electric energy transmission in the system. Therefore, the reliability and safety of avionics connectors are very important to the whole system engineering. At present, the detection of pin contacts mainly depends on manual visual detection. This method has low precision, low efficiency and no repeatability and traceability. Therefore, this paper proposes a method of pin detection based on machine vision. Carry on the system design, realize the fast high precision inspection of the pin. According to the requirements and technical specifications of the measurement, the paper studies the detection technology of the aviation electrical connector pin, determines the measurement scheme, and designs and selects the functional modules of the system based on the testing method of machine vision. The computer software is written. The algorithm of pin recognition in image is studied. Firstly, the image background is segmented with the measured electrical connector size feature to preserve the effective information area in the image, and then the image denoising algorithm is studied and selected in combination with the image quality. Finally, the algorithm of pin recognition is studied, and the scheme of pin recognition using template matching algorithm based on gray level feature is determined. The correlation coefficient matching method is used to measure the similarity between the pin template image and the image to be searched. Finally, the coarse positioning of the pin pixel coordinates is carried out. The algorithm of pin location in image is studied. Firstly, the pixel equivalent calibration of the system is carried out, and the calibration method based on the least square method is determined, and the system calibration experiment is carried out. Secondly, the extraction method of pixel coordinates is studied, and the gray centroid localization method and weighted gray centroid positioning method are experimented respectively. Finally, the coordinate transformation algorithm of the pin is discussed, and related experiments are carried out. The standard uncertainty synthesis of the system is discussed. The error source of the system is analyzed. The uncertainty components of the system are calculated by statistical method and non-statistical method, and the overall standard uncertainty of the system is synthesized, and the measuring accuracy of the system is detected by measuring the pin of known distance. The test system designed in this paper can meet the inspection requirement of circular connector pin, and the detection precision of the system is better than 0.06mm, which can meet the requirement of industrial field measurement.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:V242;TP391.41
【参考文献】
相关期刊论文 前10条
1 谢俊;吴荥荥;朱广韬;王路路;;基于机器视觉的二维尺寸检测[J];工具技术;2017年01期
2 杜永英;孙志礼;吕春梅;;JF系列某型电连接器组件端子可靠性研究[J];机械与电子;2015年09期
3 冯新星;张丽艳;叶南;杨博文;;二维高斯分布光斑中心快速提取算法研究[J];光学学报;2012年05期
4 胡静波;;改进的中值滤波去噪算法分析[J];信息技术;2011年08期
5 陈运锦;冯莹;魏立安;赵辉;朱志武;;光斑质心亚像素定位误差的实验研究[J];光电工程;2010年02期
6 宋仁庭;杨卫平;杨明月;;模板匹配算法对运动目标自动锁定跟踪的研究[J];红外与激光工程;2007年S2期
7 杨奋为;;军用电连接器的应用及发展[J];机电元件;2007年03期
8 郑国威;高满屯;董巧英;;基于平面镜的摄像机内参数线性标定方法[J];计算机工程与应用;2006年28期
9 万洪林;彭玉华;郭锐;;基于方向的自适应多级中值滤波[J];通信学报;2006年04期
10 杨奋为;航天电连接器组件的常见故障检验[J];机电元件;2005年03期
相关硕士学位论文 前10条
1 黄震;基于机器视觉的接插件检测与定位技术研究[D];中国矿业大学;2015年
2 邱志祺;基于中值滤波与小波变换的图像去噪研究[D];华北理工大学;2015年
3 刘国阳;基于机器视觉的微小零件尺寸测量技术研究[D];哈尔滨工业大学;2014年
4 王阿力;基于数字图像处理的表面缺损检测研究[D];哈尔滨工业大学;2014年
5 翁璇;大视场内多靶板位姿单目视觉跟踪测量系统的仿真研究[D];南京航空航天大学;2014年
6 张建华;基于灰度的模板匹配算法研究[D];内蒙古农业大学;2013年
7 张会利;基于图像处理技术的航天工业零件参数测量研究[D];哈尔滨工业大学;2013年
8 刘金保;形状匹配算法研究及应用[D];广东工业大学;2011年
9 朱萃;基于机器视觉的微小型组件精密测量与装配[D];大连理工大学;2010年
10 陈初侠;图像滤波及边缘检测与增强技术研究[D];合肥工业大学;2009年
,本文编号:2407210
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2407210.html