基于偏微分方程的医学图像去噪研究
[Abstract]:In the field of medical image imaging, medical B-ultrasound imaging technology has the advantages of low cost, nondestructive testing and real-time imaging, and is widely used in the related fields of medical diagnosis. The inherent formation mechanism of medical B-mode ultrasound images will lead to the existence of corresponding speckle noise points in the images, which will not only affect the clinical diagnosis but also bring difficulties to the subsequent processing of the images. In this paper, an improved denoising model algorithm for medical B-ultrasound images is proposed in view of the characteristics that the edge information is weak while the medical B-ultrasound images are denoised, which is not conducive to the subsequent processing. First of all, in order to solve the problem that medical ultrasonic speckle noise is not clear at the same time, in this paper, the partial ROF differential equation denoising model and Y-K differential equation denoising model are combined by using partial differential equation mathematical method. In this paper, the characteristics of medical B-ultrasound and the mathematical model of speckle noise are analyzed. Based on the fidelity term of B-ultrasound image denoising, a RYK comprehensive denoising model is proposed to remove the speckle noise of medical B-ultrasound image. In order to improve the edge effect of medical B-ultrasound image denoising and improve the efficiency of de-noising. Secondly, in order to further improve the effect of B-mode ultrasound image noise reduction and edge preservation, this paper proposes an improved diffusion coefficient calculation method, and applies the self-adaptive diffusion valve K. The coefficients use different diffusion coefficients in the texture region and other regions respectively to preserve the texture and edge information. A new method for calculating the coefficients is introduced to the improved RYK model based on B-mode ultrasound images. The model can deal with speckle noise and multiplicative noise more effectively, control the diffusion process of denoising better, and further improve the effect of noise reduction and edge preservation of B-ultrasound image and improve the efficiency of denoising.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41;O175.2
【参考文献】
相关期刊论文 前10条
1 刘志扬;;分数阶偏微分方程对广义二维微分变换法的运用[J];科技通报;2016年04期
2 左延红;程桦;张克仁;;基于分数阶偏微分的离散制造系统检测数据融合算法[J];计算机集成制造系统;2015年12期
3 张倩;;基于双重离散小波变换的遥感图像去噪算法[J];国土资源遥感;2015年04期
4 海涛;席志红;;各向异性四阶偏微分方程耦合二阶偏微分方程的图像放大[J];计算机应用;2015年04期
5 王新利;王家洁;;一类线性偏微分方程的整函数解及相关性质(英文)[J];复旦学报(自然科学版);2015年01期
6 邓世武;贾雨;姚兴苗;;基于四阶偏微分方程的光滑曲面重构方法[J];计算机应用;2015年02期
7 赵银善;吐尔洪江·阿布都克力木;;基于偏微分方程扩散系数的图像去噪研究[J];科学技术与工程;2015年01期
8 董婵婵;武怀彬;张芳;高小帆;桂志国;;一种改进的基于偏微分方程图像的降噪算法[J];中北大学学报(自然科学版);2014年06期
9 范俊杰;;偏微分方程的应用[J];科技视界;2014年31期
10 张帆;;基于偏微分方程与边缘检测的图像去噪算法[J];计算机工程与设计;2014年02期
相关博士学位论文 前1条
1 黄杰;基于变分偏微分方程的医学B超图像处理[D];南京理工大学;2012年
相关硕士学位论文 前6条
1 官茜;基于分数阶偏微分方程的图像去噪算法研究[D];宁夏大学;2014年
2 杨珍;基于TV模型和演化算法的图像修复技术研究[D];江西理工大学;2013年
3 刘西林;图像去噪的两类偏微分方程新模型[D];东华理工大学;2013年
4 袁张露;基于小波分析与偏微分方程的图像去噪研究[D];浙江理工大学;2012年
5 郭良益;基于偏微分方程方法的多幅图像超分辨方法研究[D];国防科学技术大学;2009年
6 张萌萌;一种基于偏微分方程的图像平滑方法[D];大连理工大学;2006年
,本文编号:2408333
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2408333.html