基于双目视觉的智能车道路环境识别研究
[Abstract]:With the rapid development of the automobile manufacturing industry and the general improvement of the social economic level, the per capita automobile ownership has been increasing year by year, and the automobile has become more and more popular in the world. The rapid development of automobile industry has improved the travel radius of human beings and made transportation more convenient. But the rapid development of automobile industry has also brought a lot of hidden dangers to human beings and society. For example, vehicle exhaust will pollute the environment, too many vehicles will make urban traffic become congested and traffic accidents caused by vehicles and so on. The frequent occurrence of traffic accidents has the most serious impact on human social safety. How to effectively improve the safety of vehicle driving has become the focus of scientific research in various countries, so the concept of intelligent vehicle came into being. In the research of vehicle intelligence, it is the development trend of automobile intelligence to use multi-sensor (lidar, camera, detector) to match with vehicle. Among them, the research and development of machine vision has become the focus of today's research. Binocular vision is an important branch in the field of machine vision, which realizes the perception of machine environment by simulating biological vision. Therefore, the method of binocular stereo vision is used to realize the extraction of lane line, the identification of obstacles, the measurement of target distance and the construction of minimum safe distance model on structured road. The main contents of this paper are as follows: (1) the construction of experimental data acquisition platform. In this paper, a movable horizontal slide track is designed and installed on a laboratory electric vehicle, and a binocular camera is installed on the slide track, where the camera can move on the slide track and adjust the different baseline distance. Finally, the image acquisition can be completed through this platform. (2) the algorithm of lane line and obstacle detection. The experimental images collected by the platform were preprocessed, and then the lane lines were identified and extracted by the improved HOUGH transform. According to the detection results, the ROI region is extracted, and the approximate area of the obstacle is found by edge detection and image entropy calculation. Then the feature points are extracted by the SIFT feature operator to find the exact location of the obstacle. In order to improve the accuracy of target tracking, this paper uses Kalman filter to track the target and verifies the prediction region with NMI features and entropy. (3) the distance measurement algorithm based on binocular vision is studied. The horizontal parallel binocular vision system is used in the ranging process. According to the principle of binocular imaging, the collected image is processed and the visual difference is extracted to complete the calculation of obstacle distance. Through a lot of experiments, the influence of baseline length at different distance on measurement accuracy is found, and the error rate of obstacle ranging is reduced finally. (4) the establishment of vehicle minimum safe distance model. First, the safety warning system and the braking process are analyzed, then the minimum safety distance model is established according to the braking principle. Finally, the model is simulated in MATLAB, and the experimental results show that the model achieves the desired results.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U463.6;TP391.41
【相似文献】
相关期刊论文 前10条
1 祝世平,强锡富;基于坐标测量机的双目视觉测距误差分析[J];电子测量与仪器学报;2000年02期
2 汪倩倩;申忠宇;张亮;;基于双目视觉模型的彩色目标实时检测与定位[J];南京师范大学学报(工程技术版);2008年01期
3 单宝华;申宇;;基于双目视觉的拉索模型自由振动监测试验[J];土木工程学报;2012年11期
4 许明杰,王洪荣;双目视觉中恢复模型点的方法──公垂线法[J];指挥技术学院学报;1997年02期
5 余洪山,王耀南;主动立体双目视觉平台的设计与实现[J];工业仪表与自动化装置;2004年01期
6 王荣本;张明恒;石德乐;;双目视觉技术在目标测量中的应用[J];公路交通科技;2007年02期
7 何秋奇;杨玉珍;岳晓峰;孙婷婷;张耀平;;基于双目视觉的塑料零件数模重构研究[J];机械工程师;2009年02期
8 李海军;徐凤生;张建臣;;基于双目视觉自动识别系统的应用研究[J];长春理工大学学报(自然科学版);2007年03期
9 张爱华;姚孝国;;双目视觉脉搏图像三维信息获取的研究[J];机械与电子;2009年10期
10 张颂;谢永杰;;基于双目视觉的空间脱靶量测量技术研究[J];光学与光电技术;2013年04期
相关会议论文 前7条
1 孟环标;杨兴强;李雪梅;;基于双目视觉的测量系统误差分析[A];第五届全国几何设计与计算学术会议论文集[C];2011年
2 朱宗磊;殷福亮;;基于双目视觉的目标检测与跟踪系统[A];2010年通信理论与信号处理学术年会论文集[C];2010年
3 王荣本;张明恒;毛晓燕;;双目视觉技术在环境探测中的应用[A];中国宇航学会深空探测技术专业委员会第二届学术会议论文集[C];2005年
4 张静;李琳;刘晓平;;基于双目视觉的虚拟手的实现[A];计算机技术与应用进展——全国第17届计算机科学与技术应用(CACIS)学术会议论文集(上册)[C];2006年
5 吴涛;刘欣;;基于单双目视觉信息融合的障碍检测方法[A];中国宇航学会深空探测技术专业委员会第二届学术会议论文集[C];2005年
6 孙明;;基于双目视觉的移动机器人避障研究[A];中国农业工程学会2011年学术年会论文集[C];2011年
7 杜英魁;韩建达;唐延东;;基于双目重建不确定性的动态特征滤除[A];第七届全国信息获取与处理学术会议论文集[C];2009年
相关博士学位论文 前3条
1 许杰;基于双目视觉和二维熵树木信息点提取及生长量反演研究[D];东北林业大学;2015年
2 陈学惠;基于移动机器人双目视觉的井下三维场景重建方法研究[D];中国矿业大学(北京);2012年
3 陈希章;基于双目视觉的弧焊机器人焊缝三维信息获取研究[D];上海交通大学;2007年
相关硕士学位论文 前10条
1 麦树彬;基于双目视觉的色盲辅助技术的研究[D];华南理工大学;2015年
2 徐宏;基于双目视觉和稀疏表示的智能倒车控制研究[D];西南交通大学;2015年
3 李辉;田间机器人的双目视觉系统误差分析研究[D];内蒙古大学;2015年
4 逯沛龙;基于FPGA的双目视觉图像预处理系统设计与实现[D];南京理工大学;2015年
5 王婷婷;基于GPU的双目视觉运动目标检测跟踪算法研究[D];哈尔滨工业大学;2015年
6 王昌盛;基于ORB算法的双目视觉测量研究[D];哈尔滨工业大学;2015年
7 赵程;具有圆面特征的非合作目标双目视觉位姿测量[D];哈尔滨工业大学;2015年
8 路研研;在轨航天器双目视觉图像采集与处理系统研制[D];哈尔滨工业大学;2015年
9 曹之乐;基于双目视觉的焦点定位方法研究与应用[D];重庆理工大学;2015年
10 王洪伟;基于双目视觉的红绿灯路口安全距离预警研究[D];安徽工程大学;2015年
,本文编号:2416304
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2416304.html